cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191610 Possible number of trailing zeros in k!.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 105, 106, 107, 108, 109, 111, 112, 113, 114, 115, 117, 118, 119, 120, 121, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136
Offset: 1

Views

Author

Keywords

Comments

Equivalently, possible values of 10-adic valuation of k!. - Joerg Arndt, Sep 21 2020

Examples

			3 is a term because 15! = 1307674368000 has 3 trailing 0's.
5 is not a term because 24! has 4 trailing 0's, but 25! has 6 trailing 0's.
		

Crossrefs

Cf. A027868, A000351, A055457 (first differences).
Complement of A000966.

Programs

  • Haskell
    a191610 1 = 0
    a191610 n = sum $ takeWhile (> 0) $ map ((n - 1) `div`) a000351_list
    -- Reinhard Zumkeller, Oct 31 2012
    
  • Mathematica
    zOF[n_Integer?Positive]:=Module[{maxpow=0},While[5^maxpow<=n,maxpow++];Plus@@Table[ Quotient[n,5^i],{i,maxpow-1}]]; Attributes[zOF]={Listable}; zOF[Range[1000]]//Union (* Harvey P. Dale, Dec 06 2023 *)
    Table[Sum[Floor[(n - 1)/5^k], {k, 0, Floor[Log[5, n]]}], {n, 1, 200}] (* Clark Kimberling, Feb 17 2025 *)
  • Python
    # requires Python 3.2 and higher
    from itertools import accumulate
    from sympy import multiplicity
    A191610 = [0]+list(accumulate(multiplicity(5,n) for n in range(5,10**3,5)))
    # Chai Wah Wu, Sep 05 2014

Formula

a(n) ~ 5*n/4. - Vaclav Kotesovec, Sep 21 2020
G.f.: 1/(1-x) * Sum_{k>=0} x^(5^k)/(1-x^5^k). - Joerg Arndt, Sep 21 2020
a(n) = Sum_{k>=0} floor((n-1)/5^k). - Clark Kimberling, Feb 17 2025