A191782 Sum of the lengths of the first ascents in all n-length left factors of Dyck paths.
1, 3, 6, 13, 24, 49, 90, 181, 335, 671, 1253, 2507, 4718, 9437, 17874, 35749, 68067, 136135, 260337, 520675, 999361, 1998723, 3848221, 7696443, 14857999, 29715999, 57500459, 115000919, 222981434, 445962869, 866262914, 1732525829, 3370764539, 6741529079, 13135064249
Offset: 1
Keywords
Examples
a(4)=13 because in UDUD, UDUU, UUDD, UUDU, UUUD, and UUUU the sum of the lengths of the first ascents is 1 + 1 + 2 + 2 + 3 + 4 = 13.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A191781.
Programs
-
Maple
c := ((1-sqrt(1-4*z^2))*1/2)/z^2: g := z*c*(1+z*c^2)/((1-z)*(1-z*c)): gser := series(g, z = 0, 40): seq(coeff(gser, z, n), n = 1 .. 35); # Alternative: a := n -> binomial(n+2, iquo(n,2)+1) - binomial(n, iquo(n,2)) - 1: seq(a(n), n=1..35); # Peter Luschny, Feb 10 2019
-
Mathematica
Rest[With[{c=(1-Sqrt[1-4x^2])/(2x^2)},CoefficientList[ Series[ (x c (1+x c^2))/((1-x)(1-x c)),{x,0,40}],x]]] (* Harvey P. Dale, Jun 19 2011 *)
-
PARI
x='x+O('x^50); Vec(((1-sqrt(1-4*x^2))*(1-2*x^2+2*x^3-sqrt(1-4*x^2)))/(2*x^3*(1-x)*(2*x-1+sqrt(1-4*x^2)))) \\ G. C. Greubel, Mar 27 2017
Formula
a(n) = Sum_{k>=0} k*A191781(n,k).
G.f.: z*c*(1+z*c^2)/((1-z)*(1-z*c)), where c = (1-sqrt(1 -4*z^2)) / (2*z^2).
a(n) ~ 3*2^(n+1/2)/sqrt(Pi*n). - Vaclav Kotesovec, Mar 21 2014
Conjecture: -(n+3)*(6*n-17)*a(n) +2*(6*n^2-2*n-57)*a(n-1) +3*(6*n^2-17*n+27)*a(n-2) -2*(2*n-3)*(12*n-25)*a(n-3) +4*(6*n-11)*(n-3)*a(n-4)=0. - R. J. Mathar, Jun 14 2016
a(n) = binomial(n+2, floor(n/2) + 1) - binomial(n, floor(n/2)) - 1. - Peter Luschny, Feb 10 2019