cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191782 Sum of the lengths of the first ascents in all n-length left factors of Dyck paths.

Original entry on oeis.org

1, 3, 6, 13, 24, 49, 90, 181, 335, 671, 1253, 2507, 4718, 9437, 17874, 35749, 68067, 136135, 260337, 520675, 999361, 1998723, 3848221, 7696443, 14857999, 29715999, 57500459, 115000919, 222981434, 445962869, 866262914, 1732525829, 3370764539, 6741529079, 13135064249
Offset: 1

Views

Author

Emeric Deutsch, Jun 18 2011

Keywords

Examples

			a(4)=13 because in UDUD, UDUU, UUDD, UUDU, UUUD, and UUUU the sum of the lengths of the first ascents is 1 + 1 + 2 + 2 + 3 + 4  = 13.
		

Crossrefs

Cf. A191781.

Programs

  • Maple
    c := ((1-sqrt(1-4*z^2))*1/2)/z^2: g := z*c*(1+z*c^2)/((1-z)*(1-z*c)): gser := series(g, z = 0, 40): seq(coeff(gser, z, n), n = 1 .. 35);
    # Alternative:
    a := n -> binomial(n+2, iquo(n,2)+1) - binomial(n, iquo(n,2)) - 1:
    seq(a(n), n=1..35); # Peter Luschny, Feb 10 2019
  • Mathematica
    Rest[With[{c=(1-Sqrt[1-4x^2])/(2x^2)},CoefficientList[ Series[ (x c (1+x c^2))/((1-x)(1-x c)),{x,0,40}],x]]] (* Harvey P. Dale, Jun 19 2011 *)
  • PARI
    x='x+O('x^50); Vec(((1-sqrt(1-4*x^2))*(1-2*x^2+2*x^3-sqrt(1-4*x^2)))/(2*x^3*(1-x)*(2*x-1+sqrt(1-4*x^2)))) \\ G. C. Greubel, Mar 27 2017

Formula

a(n) = Sum_{k>=0} k*A191781(n,k).
G.f.: z*c*(1+z*c^2)/((1-z)*(1-z*c)), where c = (1-sqrt(1 -4*z^2)) / (2*z^2).
a(n) ~ 3*2^(n+1/2)/sqrt(Pi*n). - Vaclav Kotesovec, Mar 21 2014
Conjecture: -(n+3)*(6*n-17)*a(n) +2*(6*n^2-2*n-57)*a(n-1) +3*(6*n^2-17*n+27)*a(n-2) -2*(2*n-3)*(12*n-25)*a(n-3) +4*(6*n-11)*(n-3)*a(n-4)=0. - R. J. Mathar, Jun 14 2016
a(n) = binomial(n+2, floor(n/2) + 1) - binomial(n, floor(n/2)) - 1. - Peter Luschny, Feb 10 2019