cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191822 Number of solutions to the Diophantine equation x1*x2 + x2*x3 + x3*x4 + x4*x5 = n, with all xi >= 1.

Original entry on oeis.org

0, 0, 0, 1, 2, 6, 8, 16, 20, 32, 36, 58, 58, 86, 92, 125, 122, 178, 164, 228, 224, 286, 268, 382, 330, 436, 424, 534, 474, 660, 556, 740, 692, 840, 752, 1043, 846, 1094, 1032, 1276, 1078, 1476, 1204, 1582, 1458, 1710, 1480, 2070, 1628, 2096, 1924, 2332, 1946, 2652, 2148, 2770, 2480, 2908, 2480, 3512
Offset: 1

Views

Author

N. J. A. Sloane, Jun 17 2011

Keywords

Comments

Related to "Liouville's Last Theorem".

Examples

			G.f.: x^4 + 2 x^5 + 6 x^6 + 8 x^7 + 16 x^8 + 20 x^9 + 32 x^10 + ...
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    D00:=n->add(tau(j)*tau(n-j),j=1..n-1);
    L4:=n->sigma[2](n)-n*sigma[0](n)-D00(n);
    [seq(L4(n),n=1..60)];
  • Mathematica
    a[ n_] := Length @ FindInstance[{x1 > 0, x2 > 0, x3 > 0, x4 > 0, x5 > 0, n == x1 x2 + x2 x3 + x3 x4 + x4 x5}, {x1, x2, x3, x4, x5}, Integers, 10^9]; (* Michael Somos, Nov 12 2016 *)

Formula

a(n) = sigma_2(n) - n*sigma_0(n) - A055507(n-1).