A059820 Expansion of series related to Liouville's Last Theorem: g.f. Sum_{t>0} (-1)^(t+1) *x^(t*(t+1)/2) / ( (1-x^t)^3 *Product_{i=1..t} (1-x^i) ).
0, 1, 4, 9, 19, 30, 52, 70, 107, 136, 191, 226, 314, 352, 463, 523, 664, 717, 919, 964, 1205, 1282, 1546, 1603, 1992, 2009, 2414, 2504, 2958, 2974, 3606, 3553, 4223, 4273, 4936, 4912, 5885, 5685, 6634, 6654, 7664, 7454, 8822, 8454, 9845
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
- G. E. Andrews, Some debts I owe, Séminaire Lotharingien de Combinatoire, Paper B42a, Issue 42, 2000; see (7.4).
Crossrefs
Programs
-
Maple
Mk := proc(k) -1*add( (-1)^n*q^(n*(n+1)/2)/(1-q^n)^k/mul(1-q^i,i=1..n), n=1..101): end; # with k=3
-
PARI
D(x, y, n) = sum(k=1, n-1, sigma(k, x)*sigma(n-k, y)); D000(n) = sum(k=1, n-1, sigma(k, 0)*D(0, 0, n-k)); a(n) = if(n==0, 0, (3*D(0, 0, n)+3*D(0, 1, n)+D000(n)+2*sigma(n, 0)+3*sigma(n)+sigma(n, 2))/6); \\ Seiichi Manyama, Jul 26 2024
Formula
a(n) = ( 3*A055507(n-1) + 3*A191831(n) + A191829(n) + 2*sigma_0(n) + 3*sigma(n) + sigma_2(n) )/6. - Seiichi Manyama, Jul 26 2024
Comments