cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A059820 Expansion of series related to Liouville's Last Theorem: g.f. Sum_{t>0} (-1)^(t+1) *x^(t*(t+1)/2) / ( (1-x^t)^3 *Product_{i=1..t} (1-x^i) ).

Original entry on oeis.org

0, 1, 4, 9, 19, 30, 52, 70, 107, 136, 191, 226, 314, 352, 463, 523, 664, 717, 919, 964, 1205, 1282, 1546, 1603, 1992, 2009, 2414, 2504, 2958, 2974, 3606, 3553, 4223, 4273, 4936, 4912, 5885, 5685, 6634, 6654, 7664, 7454, 8822, 8454, 9845
Offset: 0

Views

Author

N. J. A. Sloane, Feb 24 2001

Keywords

Crossrefs

Cf. A000005 (k=1), A059819 (k=2), A059820 (k=3), A059821(k=4), A059822 (k=5), A059823 (k=6), A059824 (k=7), A059825 (k=8).
Cf. A000203, A001157, A055507, A191829 (Andrews's D_{0,0,0}(n)), A191831 (Andrews's D_{0,1}(n)).

Programs

  • Maple
    Mk := proc(k) -1*add( (-1)^n*q^(n*(n+1)/2)/(1-q^n)^k/mul(1-q^i,i=1..n), n=1..101): end; # with k=3
  • PARI
    D(x, y, n) = sum(k=1, n-1, sigma(k, x)*sigma(n-k, y));
    D000(n) = sum(k=1, n-1, sigma(k, 0)*D(0, 0, n-k));
    a(n) = if(n==0, 0, (3*D(0, 0, n)+3*D(0, 1, n)+D000(n)+2*sigma(n, 0)+3*sigma(n)+sigma(n, 2))/6); \\ Seiichi Manyama, Jul 26 2024

Formula

a(n) = ( 3*A055507(n-1) + 3*A191831(n) + A191829(n) + 2*sigma_0(n) + 3*sigma(n) + sigma_2(n) )/6. - Seiichi Manyama, Jul 26 2024

A189835 Number of representations of n as a*b + b*c + c*d + d*e where a, b, d, e>0, c>=0 are integers.

Original entry on oeis.org

0, 1, 4, 9, 16, 26, 36, 53, 64, 90, 100, 138, 144, 194, 200, 261, 256, 347, 324, 426, 416, 522, 484, 658, 576, 746, 712, 882, 784, 1060, 900, 1173, 1088, 1314, 1160, 1587, 1296, 1658, 1544, 1890, 1600, 2164, 1764, 2298, 2096, 2466, 2116, 2930, 2304, 2955, 2696
Offset: 1

Views

Author

Michael Somos, Apr 28 2011

Keywords

Comments

Related to "Liouville's Last Theorem".
Inverse Möbius transform of A344485(n). - Wesley Ivan Hurt, Jul 16 2025

Examples

			G.f. = x^2 + 4*x^3 + 9*x^4 + 16*x^5 + 26*x^6 + 36*x^7 + 53*x^8 + 64*x^9 + 90*x^10 + ...
a(3) = 4 since 3 = 1*1 + 1*0 + 0*1 + 1*2 = 1*1 + 1*0 + 0*2 + 2*1 = 1*2 + 2*0 + 0*1 + 1*1 = 2*1 + 1*0 + 0*1 + 1*1 are all 4 representations of 3.
		

Crossrefs

Programs

  • Haskell
    a189835 n = a001157 n - a038040 n  -- Reinhard Zumkeller, Jan 21 2014
  • Maple
    with(numtheory); f:=n->sigma[2](n)-n*sigma[0](n);
  • Mathematica
    a[n_] := DivisorSigma[2, n] - n*DivisorSigma[0, n]; Table[a[n], {n, 51}] (* Jean-François Alcover, Aug 31 2011 *)
  • PARI
    {a(n) = if( n<1, 0, sigma( n, 2) - n * sigma( n, 0))}
    

Formula

G.f.: Sum_{k>0} (x^k + x^(2*k)) / (1 - x^k)^3 - k * x^k / (1 - x^k)^2.
a(n) = A001157(n) - A038040(n) = sigma(n,2) - n*sigma(n,0) where sigma(n,k) is the sum of the k-th powers of the divisors of n.
a(n) = Sum_{d|n} A344485(d). - Wesley Ivan Hurt, Jul 16 2025

Extensions

Added references, comment, Maple program, cross-reference to A191822. - N. J. A. Sloane, Jun 17 2011

A191832 Number of solutions to the Diophantine equation x1*x2 + x2*x3 + x3*x4 + x4*x5 + x5*x6 = n, with all xi >= 1.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 7, 10, 22, 29, 51, 61, 99, 115, 163, 192, 262, 287, 385, 428, 528, 600, 730, 780, 963, 1054, 1202, 1337, 1545, 1646, 1908, 2059, 2269, 2516, 2770, 2933, 3298, 3568, 3792, 4142, 4493, 4786, 5183, 5562, 5831, 6423, 6745, 7140, 7639, 8231, 8479, 9216, 9603, 10260, 10663, 11488, 11752, 12838, 13100, 13887
Offset: 1

Views

Author

N. J. A. Sloane, Jun 17 2011

Keywords

Comments

Related to "Liouville's Last Theorem".

Crossrefs

Programs

  • Maple
    with(numtheory);
    D00:=n->add(tau(j)*tau(n-j),j=1..n-1);
    D01:=n->add(tau(j)*sigma(n-j),j=1..n-1);
    D000:=proc(n) local t1,i,j;
    t1:=0;
    for i from 1 to n-1 do
    for j from 1 to n-1 do
    if (i+j < n) then t1 := t1+numtheory:-tau(i)*numtheory:-tau(j)*numtheory:-tau(n-i-j); fi;
    od; od;
    t1;
    end;
    L5:=n->D000(n)/6+D00(n)+D01(n)/2+(2*n-1/6)*tau(n)-11*sigma[2](n)/6;
    [seq(L5(n),n=1..60)];
    # Alternate:
    g:= proc(n,k,j) option remember;
         if n < k-1 then 0
         elif k = 2 then
            if n mod j = 0 then 1 else 0 fi
         else
            add(procname(n-j*x,k-1,x), x=1 .. floor((n-k+2)/j))
         fi
    end proc:
    f:= n -> add(g(n,6,j),j=1..n-4);
    seq(f(n),n=1..100); # Robert Israel, Dec 02 2015
  • Mathematica
    g[n_, k_, j_] := g[n, k, j] = If[n < k - 1, 0, If[k == 2, If[ Mod[n, j] == 0, 1, 0], Sum[g[n - j x, k - 1, x], {x, 1, Floor[(n - k + 2)/j]}]]];
    f[n_] := Sum[g[n, 6, j], {j, 1, n - 4}];
    Array[f, 100] (* Jean-François Alcover, Sep 25 2020, after Robert Israel *)
Showing 1-3 of 3 results.