cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A191822 Number of solutions to the Diophantine equation x1*x2 + x2*x3 + x3*x4 + x4*x5 = n, with all xi >= 1.

Original entry on oeis.org

0, 0, 0, 1, 2, 6, 8, 16, 20, 32, 36, 58, 58, 86, 92, 125, 122, 178, 164, 228, 224, 286, 268, 382, 330, 436, 424, 534, 474, 660, 556, 740, 692, 840, 752, 1043, 846, 1094, 1032, 1276, 1078, 1476, 1204, 1582, 1458, 1710, 1480, 2070, 1628, 2096, 1924, 2332, 1946, 2652, 2148, 2770, 2480, 2908, 2480, 3512
Offset: 1

Views

Author

N. J. A. Sloane, Jun 17 2011

Keywords

Comments

Related to "Liouville's Last Theorem".

Examples

			G.f.: x^4 + 2 x^5 + 6 x^6 + 8 x^7 + 16 x^8 + 20 x^9 + 32 x^10 + ...
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    D00:=n->add(tau(j)*tau(n-j),j=1..n-1);
    L4:=n->sigma[2](n)-n*sigma[0](n)-D00(n);
    [seq(L4(n),n=1..60)];
  • Mathematica
    a[ n_] := Length @ FindInstance[{x1 > 0, x2 > 0, x3 > 0, x4 > 0, x5 > 0, n == x1 x2 + x2 x3 + x3 x4 + x4 x5}, {x1, x2, x3, x4, x5}, Integers, 10^9]; (* Michael Somos, Nov 12 2016 *)

Formula

a(n) = sigma_2(n) - n*sigma_0(n) - A055507(n-1).

A210494 Biharmonic numbers: numbers m such that ( Hd(m)+Cd(m) )/2 is an integer, where Hd(m) and Cd(m) are the harmonic mean and the contraharmonic (or antiharmonic) mean of the divisors of m.

Original entry on oeis.org

1, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 35, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 119, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263
Offset: 1

Views

Author

Bruno Berselli, Oct 03 2013 - proposed by Umberto Cerruti (Department of Mathematics "Giuseppe Peano", University of Turin, Italy)

Keywords

Comments

Equivalently, numbers m such that ( m*sigma_0(m)+sigma_2(m) ) / (2*sigma_1(m)) = (A038040(m) + A001157(m))/A074400(m) is an integer.
All odd primes belong to the sequence. In fact, if p is an odd prime, (p*sigma_0(p)+sigma_2(p))/(2*sigma_1(p)) = (p+1)/2, therefore p is a biharmonic number.

Crossrefs

Cf. A001599 (harmonic numbers), A020487 (antiharmonic numbers), A038040 (n*sigma_0(n)), A001157 (sigma_2(n)), A074400 (2*sigma_1(n)), A230214 (nonprime terms of A210494).
Cf. A189835.

Programs

  • Haskell
    a210494 n = a210494_list !! (n-1)
    a210494_list = filter
       (\x -> (a001157 x + a038040 x) `mod` a074400 x == 0) [1..]
    -- Reinhard Zumkeller, Jan 21 2014
    
  • Magma
    IsInteger := func; [n: n in [1..300] | IsInteger((n*NumberOfDivisors(n)+DivisorSigma(2,n))/(2*SumOfDivisors(n)))];
    
  • Maple
    with(numtheory); P:=proc(q) local a,k,n;
    for n from 1 to q do a:=divisors(n);
    if type((n*tau(n)+add(a[k]^2,k=1..nops(a)))/(2*sigma(n)),integer) then print(n); fi; od; end; P(1000); # Paolo P. Lava, Oct 11 2013
  • Mathematica
    B[n_] := (n DivisorSigma[0, n] + DivisorSigma[2, n])/(2 DivisorSigma[1, n]); Select[Range[300], IntegerQ[B[#]] &]
  • PARI
    isok(n) = denominator((n*sigma(n,0) + sigma(n,2))/(2*sigma(n)))==1; \\ Michel Marcus, Jan 14 2016

A344485 a(n) = Sum_{d|n} (n-d) * phi(n/d).

Original entry on oeis.org

0, 1, 4, 8, 16, 21, 36, 44, 60, 73, 100, 104, 144, 157, 180, 208, 256, 261, 324, 328, 376, 421, 484, 476, 560, 601, 648, 680, 784, 765, 900, 912, 984, 1057, 1108, 1128, 1296, 1333, 1396, 1420, 1600, 1569, 1764, 1768, 1836, 1981, 2116, 2064, 2268, 2305, 2436, 2504, 2704, 2673
Offset: 1

Author

Wesley Ivan Hurt, May 20 2021

Keywords

Comments

a(n) is the sum of the (n - 1)-th antidiagonal in A074712. - Ctibor O. Zizka, Mar 14 2025
Möbius transform of A189835(n). - Wesley Ivan Hurt, Jul 16 2025

Examples

			a(6) = Sum_{d|6} (6-d) * phi(6/d) = 5*phi(6) + 4*phi(3) + 3*phi(2) + 0*phi(1) = 5*2 + 4*2 + 3*1 + 0*1 = 21.
		

Crossrefs

Programs

  • Maple
    with(numtheory): seq(add((n-d)*phi(n/d), d in divisors(n)), n=1..80); # Ridouane Oudra, Jan 21 2024
  • Mathematica
    Table[Sum[(n - k)*EulerPhi[n/k^(1 - Ceiling[n/k] + Floor[n/k])] (1 - Ceiling[n/k] + Floor[n/k]), {k, n}], {n, 80}]
  • PARI
    a(n) = sumdiv(n, d, (n-d) * eulerphi(n/d)); \\ Michel Marcus, May 21 2021

Formula

a(n) = A000290(n) - A018804(n). - Ridouane Oudra, Jan 21 2024
From Wesley Ivan Hurt, Jul 16 2025: (Start)
a(n) = Sum_{d|n} A189835(d) * mu(n/d).
a(p^k) = p^(2*k)-p^k-k*p^k+k*p^(k-1) for p prime and k>=1. (End)

A375035 Number of representations of n as 2*w*x + x*y + y*z + z*u + u*x where w, x, y, z>0, u>=0 are integers.

Original entry on oeis.org

0, 0, 0, 1, 1, 4, 3, 11, 4, 21, 10, 30, 15, 51, 14, 71, 28, 86, 36, 119, 36, 150, 55, 178, 59, 219, 68, 269, 91, 278, 105, 367, 110, 396, 116, 469, 153, 504, 162, 587, 190, 608, 210, 752, 199, 759, 253, 906, 261, 879, 296, 1085, 325, 1068, 322, 1249, 378, 1239, 406, 1466, 435, 1425, 431, 1695, 464
Offset: 1

Author

Seiichi Manyama, Jul 28 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(w=1, n\2, sum(x=1, n\(2*w), sum(y=1, n\x, sum(z=1, n\y, sum(u=0, n\z, 2*w*x+x*y+y*z+z*u+u*x==n)))));

Formula

If n is an odd, a(n) = (sigma_2(n) + 4*sigma(n) - (4*n+1)*sigma_0(n))/8.
Showing 1-4 of 4 results.