cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191830 Expansion of x^2*(2-3*x)/(1-x-x^2)^2.

Original entry on oeis.org

0, 0, 2, 1, 4, 5, 10, 16, 28, 47, 80, 135, 228, 384, 646, 1085, 1820, 3049, 5102, 8528, 14240, 23755, 39592, 65931, 109704, 182400, 303050, 503161, 834868, 1384397, 2294290, 3800080, 6290788, 10408679, 17213696, 28454415, 47014380, 77647104, 128186062
Offset: 0

Views

Author

Paul Curtz, Jun 17 2011

Keywords

Comments

a(2*n) mod 2 = 0;
a(4*n) mod 4 = 0;
a(5*n) mod 5 = 0 and a(5*n+1) mod 5 = 0;
a(n) = 2*A001629(n) - 3*A001629(n-1). - Johannes W. Meijer, Jun 27 2011

Crossrefs

Programs

  • Maple
    A191830:= proc(n) option remember: if n<=1 then 0 else procname(n-1)+procname(n-2)+A000045(n-5) fi: end proc: with(combinat): A000045:=fibonacci: seq(A191830(n),n=0..30); # Johannes W. Meijer, Jun 27 2011
  • Mathematica
    CoefficientList[Series[x^2(2-3x)/(1-x-x^2)^2,{x,0,40}],x] (* or *) LinearRecurrence[{2,1,-2,-1},{0,0,2,1},40] (* Harvey P. Dale, Mar 16 2015 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,-2,1,2]^n*[0;0;2;1])[1,1] \\ Charles R Greathouse IV, Jul 06 2017

Formula

G.f.: x^2*(2-3*x)/(1-x-x^2)^2.
a(n) = a(n-1) + a(n-2) + A000045(n-5), a(0) = a(1) = 0.
a(0)=0, a(1)=0, a(2)=2, a(3)=1, a(n)=2*a(n-1)+a(n-2)-2*a(n-3)-a(n-4). - Harvey P. Dale, Mar 16 2015