A191872 a(n) is the smallest multiple of n such that the sum of the square of the decimal digits of a(n) is divisible by n.
1, 2, 3, 4, 5, 6, 7, 8, 9, 130, 1265, 60, 143, 154, 360, 48, 1071, 396, 133, 240, 693, 1386, 1817, 888, 50, 286, 999, 2408, 2552, 390, 372, 448, 1419, 2992, 315, 2268, 1295, 266, 3666, 480, 1148, 1344, 129, 11176, 360, 3818, 329, 8880, 2254, 550, 1071, 2444, 2597, 2268, 12485, 2688, 399, 2552, 12449, 111960, 549, 372, 693, 8000
Offset: 1
Examples
a(11) =1265 because 11*115 = 1265 and 1^2+2^2+6^2+5^2 = 66 = 11*6.
Links
- Robert Israel, Table of n, a(n) for n = 1..467
Programs
-
Maple
with(numtheory):for n from 1 to 80 do:id:=0:for k from 1 to 1000000 while(id=0) do :l:=length(k):n0:=k:s1:=0:for m from 1 to l do:q:=n0:u:=irem(q, 10):v:=iquo(q, 10):n0:=v :s1:=s1+u^2 :od: :if irem(k,n) =0 and irem(s1,n)=0 then id:=1:printf(`%d, `, k):else fi:od: od:
-
Mathematica
smn[n_]:=Module[{k=1},While[Mod[Total[IntegerDigits[k n]^2],n]!=0,k++];n k]; Array[smn,70] (* Harvey P. Dale, Feb 13 2023 *)
-
PARI
a(n)=my(s);forstep(k=n,9e9,n,s=eval(Vec(Str(k)));if(sum(i=1,#s,s[i]^2)%n==0,return(k))) \\ Charles R Greathouse IV, Jun 20 2011