A191898 Symmetric square array read by antidiagonals: T(n,1)=1, T(1,k)=1, T(n,k) = -Sum_{i=1..k-1} T(n-i,k) for n >= k, -Sum_{i=1..n-1} T(k-i,n) for n < k.
1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -2, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -2, 1, 1, -2, 1, 1, 1, -1, 1, -1, -4, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -6, -1, 1, -1, 1, -1, 1
Offset: 1
Examples
Array starts: n\k | 1 2 3 4 5 6 7 8 9 10 ----+----------------------------------------------------- 1 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 2 | 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, ... 3 | 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, ... 4 | 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, ... 5 | 1, 1, 1, 1, -4, 1, 1, 1, 1, -4, ... 6 | 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, ... 7 | 1, 1, 1, 1, 1, 1, -6, 1, 1, 1, ... 8 | 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, ... 9 | 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, ... 10 | 1, -1, 1, -1, -4, -1, 1, -1, 1, 4, ...
Links
- Antti Karttunen, Table of n, a(n) for n = 1..22155; the first 210 antidiagonals of the array
- Mats Granvik, Is this similarity to the Fourier transform of the von Mangoldt function real?
- Mats Granvik, Is this Riemann zeta function product equal to the Fourier transform of the von Mangoldt function?
- Mats Granvik, Primes approximated by eigenvalues?
- Mats Granvik, Are the primes found as a subset in this sequence a(n)?
- Mats Granvik, Will every eigenvalue in this type of matrix eventually be a common eigenvalue to infinitely many subsequent larger matrices of the same form?
- Mats Granvik, How write Dirichlet character sums for the terms of the von Mangoldt function?
- Mats Granvik, Do these series converge to the von Mangoldt function?
- Mats Granvik, Is this sum equal to the Möbius function?
- Mats Granvik, Can the Riemann hypothesis be relaxed to say that this matrix A consists of square roots?
- Mats Granvik, Elementary proof of the prime number theorem?
- Mats Granvik, Is this Dirichlet series generating function of the von Mangoldt function matrix correct?
- Mats Granvik, Question about ratios of polynomials evaluated at x=1
Crossrefs
Programs
-
Mathematica
T[ n_, k_] := T[ n, k] = Which[ n < 1 || k < 1, 0, n == 1 || k == 1, 1, k > n, T[k, n], n > k,T[k, Mod[n, k, 1]], True, -Sum[ T[n, i], {i, n - 1}]]; (* Michael Somos, Jul 18 2011 *) (* Conjectured expression for the matrix as Dirichlet characters *) s = RandomInteger[{1, 3}]; c = RandomInteger[{1, 3}]; nn = 12; b = Table[Exp[MangoldtLambda[Divisors[n]]]^-MoebiusMu[Divisors[n]], {n, 1, nn^Max[s, c]}]; j = 1; MatrixForm[Table[Table[Product[(b[[n^s]][[m]]*DirichletCharacter[b[[n^s]][[m]], j, k^c] - (b[[n^s]][[m]] - 1)), {m, 1, Length[Divisors[n]]}], {n, 1, nn}], {k, 1, nn}]] (* Mats Granvik, Nov 23 2013 and Aug 09 2016 *)
-
PARI
{T(n, k) = if( n<1 || k<1, 0, n==1 || k==1, 1, k>n, T(k, n), k
Michael Somos, Jul 18 2011 */ -
Python
from sympy.core.cache import cacheit @cacheit def T(n, k): return 0 if n<1 or k<1 else 1 if n==1 or k==1 else T(k, n) if k>n else T(k, (n - 1)%k + 1) if n>k else -sum([T(n, i) for i in range(1, n)]) for n in range(1, 21): print([T(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Oct 23 2017
Formula
T(n,1)=1, T(1,k)=1, n>=k: -Sum_{i=1..k-1} T(n-i,k), n
T(n, n) = A023900(n). - Michael Somos, Jul 18 2011
T(n, k) = A023900(gcd(n,k)). - Mats Granvik, Jun 18 2012
Dirichlet generating function for sequence in the n-th row: zeta(s)*Sum_{ d divides n } mu(d)/d^(s-1). - Mats Granvik, Jun 18 2012 & Jun 19 2016
From Mats Granvik, Jun 19 2016: (Start)
Dirichlet generating function for the whole matrix: Sum_{k>=1} (Sum_{n>=1} T(n,k)/(n^c*k^s)) = Sum_{n>=1} (zeta(s)*Sum_{ d divides n } mu(d)/d^(s-1))/n^c = zeta(s)*zeta(c)/zeta( c + s - 1 ).
T(n,k) = A127093(n,k)^(1/2-i*a(k))*transpose(A008683(k)*(A127093(n,k)^(1/2+i*a(n)))) where a(x) is some real number. An example would be T(n,k) = A127093(n,k)^(zetazero(k))*transpose(A008683(k)*(A127093(n,k)^(zetazero(-k)))) but this is of course not special for only the zeta zeros.
Recurrence for a subset of A191898 that is a cross-directional variant of the recurrence in A051731: T(1,1)=1, T(1,2..k)=0, T(2..n,1)=0, n >= k: -Sum_{i=1..k-1} T(n-i,k) - T(n-i,k-1), n < k: -Sum_{i=1..n-1} T(k-i,n) - T(k-i,n-1). Notice that the identity matrix in linear algebra satisfies a similar recurrence:
T(1,1)=1, T(1,2..k)=0, T(2..n,1)=0, n >= k: -Sum_{i=1..n-1} T(n-i,k) - T(n-i,k-1), n < k: -Sum_{i=1..k-1} T(k-i,n) - T(k-i,n-1).
(End)
Dirichlet generating function for absolute values: Sum_{k>=1} (Sum_{n>=1} abs(T(n,k))/(n^c*k^s)) = zeta(s)*zeta(c)*zeta(s + c - 1)/zeta(2*(s + c - 1))*Product_{k>=1} (1 - 2/(prime(k) + prime(k)^(s + c))). After Vaclav Kotesovec in A173557. - Mats Granvik, Apr 25 2021
Comments