cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 40 results. Next

A309229 Square array read by upwards antidiagonals: T(n,k) = Sum_{i=1..n} A191898(i,k).

Original entry on oeis.org

1, 2, 1, 3, 0, 1, 4, 1, 2, 1, 5, 0, 0, 0, 1, 6, 1, 1, 1, 2, 1, 7, 0, 2, 0, 3, 0, 1, 8, 1, 0, 1, 4, -2, 2, 1, 9, 0, 1, 0, 0, -3, 3, 0, 1, 10, 1, 2, 1, 1, -2, 4, 1, 2, 1, 11, 0, 0, 0, 2, 0, 5, 0, 0, 0, 1, 12, 1, 1, 1, 3, 1, 6, 1, 1, 1, 2, 1, 13, 0, 2, 0, 4, 0, 0, 0, 2, 0, 3, 0, 1, 14, 1, 0, 1, 0, -2, 1, 1, 0, -4, 4, -2, 2, 1
Offset: 1

Views

Author

Mats Granvik, Aug 10 2019

Keywords

Comments

log(A003418(n)) = Sum_{k>=1} (T(n, k)/k - 1/k).
Partial sums of the symmetric matrix A191898. - Mats Granvik, Apr 12 2020
1 + Sum_{k=1..2*n} sign((sign(n+Sum_{j=2..k}-|T(n,j)|)+1)) appears to be asymptotic to sqrt(8*n). - Mats Granvik, Jun 08 2020
From Mats Granvik, Apr 14 2021: (Start)
Conjecture 1: For n>1: max(T(1..n,n)) + min(T(1..n,n)) = 2*mean(T(1..n,n)) = -A023900(n).
Patterns that eventually fail or possibly become switched are:
max(T(n,1..n!)) = 1,2,3,4,5,6,7,8,...
min(T(n,1..n!)) = 1,0,-2,-3,-7,-5,-11,-12,...
which are the first 8 terms of A275205.
Conjecture 2: The Prime Number Theorem should imply: mean(T(n,1..n!)) = 1.
(End)

Examples

			   1, 1, 1, 1, 1,  1, 1, 1, 1,  1,  1,  1,  1,  1, ...
   2, 0, 2, 0, 2,  0, 2, 0, 2,  0,  2,  0,  2,  0, ...
   3, 1, 0, 1, 3, -2, 3, 1, 0,  1,  3, -2,  3,  1, ...
   4, 0, 1, 0, 4, -3, 4, 0, 1,  0,  4, -3,  4,  0, ...
   5, 1, 2, 1, 0, -2, 5, 1, 2, -4,  5, -2,  5,  1, ...
   6, 0, 0, 0, 1,  0, 6, 0, 0, -5,  6,  0,  6,  0, ...
   7, 1, 1, 1, 2,  1, 0, 1, 1, -4,  7,  1,  7, -6, ...
   8, 0, 2, 0, 3,  0, 1, 0, 2, -5,  8,  0,  8, -7, ...
   9, 1, 0, 1, 4, -2, 2, 1, 0, -4,  9, -2,  9, -6, ...
  10, 0, 1, 0, 0, -3, 3, 0, 1,  0, 10, -3, 10, -7, ...
  11, 1, 2, 1, 1, -2, 4, 1, 2,  1,  0, -2, 11, -6, ...
  12, 0, 0, 0, 2,  0, 5, 0, 0,  0,  1,  0, 12, -7, ...
  13, 1, 1, 1, 3,  1, 6, 1, 1,  1,  2,  1,  0, -6, ...
  14, 0, 2, 0, 4,  0, 0, 0, 2,  0,  3,  0,  1,  0, ...
  ...
		

Crossrefs

Programs

  • Mathematica
    f[n_] := DivisorSum[n, MoebiusMu[#] # &]; nn = 14; A = Accumulate[Table[Table[f[GCD[n, k]], {k, 1, nn}], {n, 1, nn}]]; Flatten[Table[Table[A[[n - k + 1, k]], {k, 1, n}], {n, 1, nn}]] (* Mats Granvik, Jun 09 2020 *)

Formula

Recurrence:
T(n, 1) = [n >= 1]*n;
T(1, k) = 1;
T(n, k) = [n > k]*T(n - k, k) + [n <= k](Sum_{i=0..n-1} T(n - 1, k - i) - Sum_{i=1..n-1} T(n, k - i)). - Mats Granvik, Jun 19 2020
T(n,k) = Sum_{i=1..n} A191898(i,k).

A334312 Triangle read by rows: T(n,k) = Sum_{i=k..n} A191898(i,k).

Original entry on oeis.org

1, 2, -1, 3, 0, -2, 4, -1, -1, -1, 5, 0, 0, 0, -4, 6, -1, -2, -1, -3, 2, 7, 0, -1, 0, -2, 3, -6, 8, -1, 0, -1, -1, 2, -5, -1, 9, 0, -2, 0, 0, 0, -4, 0, -2, 10, -1, -1, -1, -4, -1, -3, -1, -1, 4, 11, 0, 0, 0, -3, 0, -2, 0, 0, 5, -10, 12, -1, -2, -1, -2, 2, -1, -1, -2, 4, -9, 2
Offset: 1

Views

Author

Mats Granvik, Apr 22 2020

Keywords

Comments

A334314(n)/A334313(n) = Sum_{k=1..n} T(n,k)/k.

Examples

			Triangle begins:
1,
2,  -1,
3,   0,  -2,
4,  -1,  -1,  -1,
5,   0,   0,   0,  -4,
6,  -1,  -2,  -1,  -3,   2,
7,   0,  -1,   0,  -2,   3,  -6,
8,  -1,   0,  -1,  -1,   2,  -5,  -1,
9,   0,  -2,   0,   0,   0,  -4,   0,  -2,
10, -1,  -1,  -1,  -4,  -1,  -3,  -1,  -1,   4,
11,  0,   0,   0,  -3,   0,  -2,   0,   0,   5,  -10,
12, -1,  -2,  -1,  -2,   2,  -1,  -1,  -2,   4,   -9,   2,
...
		

Crossrefs

Row sums give A000012.

Programs

  • Mathematica
    nn=14; f[n_] := Total[Divisors[n]*MoebiusMu[Divisors[n]]]; Flatten[Table[Table[Sum[f[GCD[i, k]], {i, k, n}], {k, 1, n}], {n, 1, nn}]]

Formula

Let: f(n) = Sum_{ d divides n } d*mu(d) = A023900(n), then T(n,k) = Sum_{i=k..n} f(gcd(i,k)).
Recurrence 1:
T(n, 1) = n.
T(n, k) = [n >= k]*[k > 1]*(Sum_{j=0..n-k} Sum_{i=j+1..k-1} (T(k-1,i)-T(k,i)) -Sum_{i=n-k+1..n-1} T(i, k)).
Recurrence 2:
T(n, 1) = n.
T(n, k) = [n >= k]*(Sum_{i=n-k+1..k-1}T(k-1,i)-T(k,i)) + [n >= 2*k]*T(n-k,k).

A343555 a(n) = numerator(max_{k=2..n}(A191898(n, k)/k)), n>=2.

Original entry on oeis.org

-1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 8, 1, 1, 1, 1, 2, 4, 5, 1, 1, 1, 6, 1, 3, 1, 8, 1, 1, 20, 8, 24, 1, 1, 9, 8, 2, 1, 4, 1, 5, 8, 11, 1, 1, 1, 2, 32, 6, 1, 1, 8, 3, 12, 14, 1, 8, 1, 15, 4, 1, 48, 20, 1, 8, 44, 24, 1, 1, 1, 18, 8, 9, 60, 8
Offset: 2

Views

Author

Mats Granvik, Apr 19 2021

Keywords

Examples

			max(-1/2) = -1/2 therefore a(2) = -1,
max(1/2, -2/3) = 1/2 therefore a(3) = 1,
max(-1/2, 1/3, -1/4) = 1/3 therefore a(4) = 1,
max(1/2, 1/3, 1/4, -4/5) = 1/2 therefore a(5) = 1
max(-1/2, -2/3, -1/4, 1/5, 1/3) = 1/3 therefore a(6) = 1,
max(1/2, 1/3, 1/4, 1/5, 1/6, -6/7) = 1/2 therefore a(7) = 1,
max(-1/2, 1/3, -1/4, 1/5, -1/6, 1/7, -1/8) = 1/3 therefore a(8) = 1,
max(1/2, -2/3, 1/4, 1/5, -1/3, 1/7, 1/8, -2/9) = 1/2 therefore a(9) = 1,
max(-1/2, 1/3, -1/4, -4/5, -1/6, 1/7, -1/8, 1/9, 2/5) = 2/5 therefore a(10) = 2.
		

Crossrefs

Cf. A343556 (denominator). Cf. A171462, A191898.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, MoebiusMu[#] # &]; nn = 78; Numerator[
    Table[Max[Table[a[GCD[n, k]]/k, {k, 2, n}]], {n, 2, nn}]]
  • PARI
    memoA191898 = Map();
    A191898sq(n, k) = if(n<1 || k<1, 0, n==1 || k==1, 1, k>n, A191898sq(k, n), kA191898sq(k, (n-1)%k+1), my(v); if(mapisdefined(memoA191898,[n,k],&v), v, v = -sum( i=1, n-1, A191898sq(n, i)); mapput(memoA191898,[n,k],v); (v))); \\ After Michael Somos' code in A191898
    A343555(n) = { my(m=0,r); for(k=2, n, r = A191898sq(n, k)/k; if(!m || (r > m), m = r)); numerator(m); }; \\ Antti Karttunen, Jan 28 2025

Formula

n>=2: a(n) = numerator(max_{k=2..n}(A191898(n, k)/k)).

A343556 a(n) = denominator(max_{k=2..n}(A191898(n, k)/k)), n>=2.

Original entry on oeis.org

2, 2, 3, 2, 3, 2, 3, 2, 5, 2, 3, 2, 7, 15, 3, 2, 3, 2, 5, 7, 11, 2, 3, 2, 13, 2, 7, 2, 15, 2, 3, 33, 17, 35, 3, 2, 19, 13, 5, 2, 7, 2, 11, 15, 23, 2, 3, 2, 5, 51, 13, 2, 3, 11, 7, 19, 29, 2, 15, 2, 31, 7, 3, 65, 33, 2, 17, 69, 35, 2, 3, 2, 37, 15, 19, 77, 13
Offset: 2

Views

Author

Mats Granvik, Apr 19 2021

Keywords

Examples

			max(-1/2) = -1/2 therefore a(2) = 2,
max(1/2, -2/3) = 1/2 therefore a(3) = 2,
max(-1/2, 1/3, -1/4) = 1/3 therefore a(4) = 3,
max(1/2, 1/3, 1/4, -4/5) = 1/2 therefore a(5) = 2
max(-1/2, -2/3, -1/4, 1/5, 1/3) = 1/3 therefore a(6) = 3,
max(1/2, 1/3, 1/4, 1/5, 1/6, -6/7) = 1/2 therefore a(7) = 2,
max(-1/2, 1/3, -1/4, 1/5, -1/6, 1/7, -1/8) = 1/3 therefore a(8) = 3,
max(1/2, -2/3, 1/4, 1/5, -1/3, 1/7, 1/8, -2/9) = 1/2 therefore a(9) = 2,
max(-1/2, 1/3, -1/4, -4/5, -1/6, 1/7, -1/8, 1/9, 2/5) = 2/5 therefore a(10) = 5.
		

Crossrefs

Cf. A343555 (numerators). Cf. A171462, A191898.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, MoebiusMu[#] # &]; nn = 78; Denominator[Table[Max[Table[a[GCD[n, k]]/k, {k, 2, n}]], {n, 2, nn}]]
  • PARI
    memoA191898 = Map();
    A191898sq(n, k) = if(n<1 || k<1, 0, n==1 || k==1, 1, k>n, A191898sq(k, n), kA191898sq(k, (n-1)%k+1), my(v); if(mapisdefined(memoA191898,[n,k],&v), v, v = -sum( i=1, n-1, A191898sq(n, i)); mapput(memoA191898,[n,k],v); (v))); \\ After Michael Somos' code in A191898
    A343556(n) = { my(m=0,r); for(k=2, n, r = A191898sq(n, k)/k; if(!m || (r > m), m = r)); denominator(m); }; \\ Antti Karttunen, Jan 28 2025

Formula

n>=2: a(n) = denominator(max_{k=2..n}(A191898(n, k)/k)).

A293147 Triangle read by rows: coefficients of the characteristic polynomial of the n-th submatrix of A191898.

Original entry on oeis.org

0, 1, -1, -2, 0, 1, 6, 4, -2, -1, 0, -12, -5, 3, 1, 0, 60, 49, -3, -7, -1, 0, 360, 84, -90, -19, 5, 1, 0, -2520, -1308, 414, 241, -5, -11, -1, 0, 0, 3780, 1752, -590, -290, 9, 12, 1, 0, 0, 0, -7560, -2874, 1122, 406, -19, -14, -1
Offset: 0

Views

Author

Mats Granvik, Oct 01 2017

Keywords

Comments

It appears that for n > 10, the nearest integer to the largest negative eigenvalue of the n-th characteristic polynomial is equal to the previous prime sequence A007917(n).
A007917(n) = round(max(-eigenvalues(A191898(1..n,1..n)))) (for n > 10), has been verified in the range n=11 to n=100.

Examples

			   0;
   1,    -1;
  -2,     0,     1;
   6,     4,    -2,    -1;
   0,   -12,    -5,     3,     1;
   0,    60,    49,    -3,    -7,   -1;
   0,   360,    84,   -90,   -19,    5,   1;
   0, -2520, -1308,   414,   241,   -5, -11,  -1;
   0,     0,  3780,  1752,  -590, -290,   9,  12,   1;
   0,     0,     0, -7560, -2874, 1122, 406, -19, -14, -1;
   ...
max(-eigenvalues(A191898(1..12,1..12)))=11.096...
max(-eigenvalues(A191898(1..13,1..13)))=12.9021...
		

Crossrefs

Programs

  • Mathematica
    Clear[A,B,nnn]; nnn=9; charpol = Table[A = Table[Table[If[Mod[n, k] == 0, 1, 0], {k, 1, nn}], {n, 1, nn}]; B = Table[Table[If[Mod[k, n] == 0, MoebiusMu[n]*n, 0], {k, 1, nn}], {n, 1, nn}]; CoefficientList[CharacteristicPolynomial[A.B, x], x], {nn, 1, nnn}];Flatten[charpol]

A316274 Nonzero terms in row sums of the lower triangular part of a square matrix formed by Dirichlet convolution of adjacent columns in the square matrix A191898.

Original entry on oeis.org

1, -4, -16, -9, -48, -25, -54, -128, 36, -49, -320, 144, -243, 100, 216, -121, -250, -768, 432, -169, 196, 400, 864, 225, -972, -1792, 1152, -289, 972, -686, -361, 784, 1200, 2592, 441, 484, 1000
Offset: 1

Views

Author

Mats Granvik, Jun 28 2018

Keywords

Comments

The motivation for this sequence is expression 1 in Terence Tao's blog post "Correlations of the von Mangoldt and higher divisor functions I. Long shift ranges".

Crossrefs

Cf. A191898.

Programs

  • Mathematica
    Clear[nn, h, a, n, d, b, m];
    nn = 500;
    h = 1;
    a[n_] := If[n < 1, 0, Sum[d MoebiusMu@d, {d, Divisors[n]}]];
    TableForm[Transpose[Table[{n, a[n]}, {n, 1, nn}]]];
    b = DeleteCases[
      Table[Sum[
        Sum[If[Mod[n, k] == 0, a[GCD[n/k, m]]*a[GCD[k, m + h]], 0], {k, 1,
           n}], {m, 1, n}], {n, 1, nn}], 0]

Formula

a(n) = A298825(A001694(n)). - Mats Granvik, Oct 08 2018

A364933 a(n) = Sum_{k=1..n} A191898(n,k)*[A191904(n,k) = A191898(n,k)].

Original entry on oeis.org

0, -1, -1, 0, -1, -2, -1, 2, 3, -2, -1, 0, -1, -2, 1, 6, -1, 2, -1, 2, 3, -2, -1, 4, 15, -2, 15, 4, -1, 0, -1, 14, 7, -2, 13, 8, -1, -2, 9, 10, -1, 2, -1, 8, 17, -2, -1, 12, 35, 14, 13, 10, -1, 14, 25, 16, 15, -2, -1, 8, -1, -2, 27, 30, 31, 6, -1, 14, 19, 12
Offset: 1

Views

Author

Mats Granvik, Aug 13 2023

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := DivisorSum[n, MoebiusMu[#] # &]; Table[Sum[If[If[Mod[n, k] == 0, 1 - k, 1] == f[GCD[n, k]], f[GCD[n, k]], 0], {k, 1, n}], {n, 1, 70}]

Formula

a(n) = Sum_{k=1..n} A191898(n,k)*[A191904(n,k) = A191898(n,k)].
Conjecture: a(n) = A057859(n) - A008472(n) - 1.

A008683 Möbius (or Moebius) function mu(n). mu(1) = 1; mu(n) = (-1)^k if n is the product of k different primes; otherwise mu(n) = 0.

Original entry on oeis.org

1, -1, -1, 0, -1, 1, -1, 0, 0, 1, -1, 0, -1, 1, 1, 0, -1, 0, -1, 0, 1, 1, -1, 0, 0, 1, 0, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, 1, 1, 0, -1, -1, -1, 0, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 1, 0, 1, 1, -1, 0, -1, 1, 0, 0, 1, -1, -1, 0, 1, -1, -1, 0, -1, 1, 0, 0, 1, -1
Offset: 1

Views

Author

Keywords

Comments

Moebius inversion: f(n) = Sum_{d|n} g(d) for all n <=> g(n) = Sum_{d|n} mu(d)*f(n/d) for all n.
a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3 * 3 and 375 = 3 * 5^3 both have prime signature (3, 1).
A008683 = A140579^(-1) * A140664. - Gary W. Adamson, May 20 2008
Coons & Borwein prove that Sum_{n>=1} mu(n) z^n is transcendental. - Jonathan Vos Post, Jun 11 2008; edited by Charles R Greathouse IV, Sep 06 2017
Equals row sums of triangle A144735 (the square of triangle A054533). - Gary W. Adamson, Sep 20 2008
Conjecture: a(n) is the determinant of Redheffer matrix A143104 where T(n, n) = 0. Verified for the first 50 terms. - Mats Granvik, Jul 25 2008
From Mats Granvik, Dec 06 2008: (Start)
The Editorial Office of the Journal of Number Theory kindly provided (via B. Conrey) the following proof of the conjecture: Let A be A143104 and B be A143104 where T(n, n) = 0.
"Suppose you expand det(B_n) along the bottom row. There is only a 1 in the first position and so the answer is (-1)^n times det(C_{n-1}) say, where C_{n-1} is the (n-1) by (n-1) matrix obtained from B_n by deleting the first column and the last row. Now the determinant of the Redheffer matrix is det(A_n) = M(n) where M(n) is the sum of mu(m) for 1 <= m <= n. Expanding det(A_n) along the bottom row, we see that det(A_n) = (-1)^n * det(C_{n-1}) + M(n-1). So we have det(B_n) = (-1)^n * det(C_{n-1}) = det(A_n) - M(n-1) = M(n) - M(n-1) = mu(n)." (End)
Conjecture: Consider the table A051731 and treat 1 as a divisor. Move the value in the lower right corner vertically to a divisor position in the transpose of the table and you will find that the determinant is the Moebius function. The number of permutation matrices that contribute to the Moebius function appears to be A074206. - Mats Granvik, Dec 08 2008
Convolved with A152902 = A000027, the natural numbers. - Gary W. Adamson, Dec 14 2008
[Pickover, p. 226]: "The probability that a number falls in the -1 mailbox turns out to be 3/Pi^2 - the same probability as for falling in the +1 mailbox". - Gary W. Adamson, Aug 13 2009
Let A = A176890 and B = A * A * ... * A, then the leftmost column in matrix B converges to the Moebius function. - Mats Granvik, Gary W. Adamson, Apr 28 2010 and May 28 2020
Equals row sums of triangle A176918. - Gary W. Adamson, Apr 29 2010
Calculate matrix powers: A175992^0 - A175992^1 + A175992^2 - A175992^3 + A175992^4 - ... Then the Mobius function is found in the first column. Compare this to the binomial series for (1+x)^-1 = 1 - x + x^2 - x^3 + x^4 - ... . - Mats Granvik, Gary W. Adamson, Dec 06 2010
From Richard L. Ollerton, May 08 2021: (Start)
Formulas for the numerous OEIS entries involving the Möbius transform (Dirichlet convolution of a(n) and some sequence h(n)) can be derived using the following (n >= 1):
Sum_{d|n} mu(d)*h(n/d) = Sum_{k=1..n} h(gcd(n,k))*mu(n/gcd(n,k))/phi(n/gcd(n,k)) = Sum_{k=1..n} h(n/gcd(n,k))*mu(gcd(n,k))/phi(n/gcd(n,k)), where phi = A000010.
Use of gcd(n,k)*lcm(n,k) = n*k provides further variations. (End)
Formulas for products corresponding to the sums above are also available for sequences f(n) > 0: Product_{d|n} f(n/d)^mu(d) = Product_{k=1..n} f(gcd(n,k))^(mu(n/gcd(n,k))/phi(n/gcd(n,k))) = Product_{k=1..n} f(n/gcd(n,k))^(mu(gcd(n,k))/phi(n/gcd(n,k))). - Richard L. Ollerton, Nov 08 2021

Examples

			G.f. = x - x^2 - x^3 - x^5 + x^6 - x^7 + x^10 - x^11 - x^13 + x^14 + x^15 + ...
		

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 24.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 161, #16.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, pp. 64-65.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, th. 262 and 287.
  • Clifford A. Pickover, "The Math Book, from Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics", Sterling Publishing, 2009, p. 226. - Gary W. Adamson, Aug 13 2009
  • G. Pólya and G. Szegő, Problems and Theorems in Analysis Volume II. Springer_Verlag 1976.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 98-99.

Crossrefs

Variants of a(n) are A178536, A181434, A181435.
Cf. A059956 (Dgf at s=2), A088453 (Dgf at s=3), A215267 (Dgf at s=4), A343308 (Dgf at s=5).

Programs

  • Axiom
    [moebiusMu(n) for n in 1..100]
    
  • Haskell
    import Math.NumberTheory.Primes.Factorisation (factorise)
    a008683 = mu . snd . unzip . factorise where
    mu [] = 1; mu (1:es) = - mu es; mu (_:es) = 0
    -- Reinhard Zumkeller, Dec 13 2015, Oct 09 2013
    
  • Haskell
    a008683 1 = 1
    a008683 n = - sum [a008683 d | d <- [1..(n-1)], n `mod` d == 0]
    -- Harry Richman, Jun 13 2025
    
  • Magma
    [ MoebiusMu(n) : n in [1..100]];
    
  • Maple
    with(numtheory): A008683 := n->mobius(n);
    with(numtheory): [ seq(mobius(n), n=1..100) ];
    # Note that older versions of Maple define mobius(0) to be -1.
    # This is unwise! Moebius(0) is better left undefined.
    with(numtheory):
    mu:= proc(n::posint) option remember; `if`(n=1, 1,
           -add(mu(d), d=divisors(n) minus {n}))
         end:
    seq(mu(n), n=1..100);  # Alois P. Heinz, Aug 13 2008
  • Mathematica
    Array[ MoebiusMu, 100]
    (* Second program: *)
    m = 100; A[_] = 0;
    Do[A[x_] = x - Sum[A[x^k], {k, 2, m}] + O[x]^m // Normal, {m}];
    CoefficientList[A[x]/x, x] (* Jean-François Alcover, Oct 20 2019, after Ilya Gutkovskiy *)
  • Maxima
    A008683(n):=moebius(n)$ makelist(A008683(n),n,1,30); /* Martin Ettl, Oct 24 2012 */
    
  • PARI
    a=n->if(n<1,0,moebius(n));
    
  • PARI
    {a(n) = if( n<1, 0, direuler( p=2, n, 1 - X)[n])};
    
  • PARI
    list(n)=my(v=vector(n,i,1)); forprime(p=2, sqrtint(n), forstep(i=p, n, p, v[i]*=-1); forstep(i=p^2, n, p^2, v[i]=0)); forprime(p=sqrtint(n)+1, n, forstep(i=p, n, p, v[i]*=-1)); v \\ Charles R Greathouse IV, Apr 27 2012
    
  • Python
    from sympy import mobius
    print([mobius(i) for i in range(1, 101)])  # Indranil Ghosh, Mar 18 2017
  • Sage
    @cached_function
    def mu(n):
        if n < 2: return n
        return -sum(mu(d) for d in divisors(n)[:-1])
    # Changing the sign of the sum gives the number of ordered factorizations of n A074206.
    print([mu(n) for n in (1..96)])  # Peter Luschny, Dec 26 2016
    

Formula

Sum_{d|n} mu(d) = 1 if n = 1 else 0.
Dirichlet generating function: Sum_{n >= 1} mu(n)/n^s = 1/zeta(s). Also Sum_{n >= 1} mu(n)*x^n/(1-x^n) = x.
In particular, Sum_{n > 0} mu(n)/n = 0. - Franklin T. Adams-Watters, Jun 20 2014
phi(n) = Sum_{d|n} mu(d)*n/d.
a(n) = A091219(A091202(n)).
Multiplicative with a(p^e) = -1 if e = 1; 0 if e > 1. - David W. Wilson, Aug 01 2001
abs(a(n)) = Sum_{d|n} 2^A001221(d)*a(n/d). - Benoit Cloitre, Apr 05 2002
Sum_{d|n} (-1)^(n/d)*mobius(d) = 0 for n > 2. - Emeric Deutsch, Jan 28 2005
a(n) = (-1)^omega(n) * 0^(bigomega(n) - omega(n)) for n > 0, where bigomega(n) and omega(n) are the numbers of prime factors of n with and without repetition (A001222, A001221, A046660). - Reinhard Zumkeller, Apr 05 2003
Dirichlet generating function for the absolute value: zeta(s)/zeta(2s). - Franklin T. Adams-Watters, Sep 11 2005
mu(n) = A129360(n) * (1, -1, 0, 0, 0, ...). - Gary W. Adamson, Apr 17 2007
mu(n) = -Sum_{d < n, d|n} mu(d) if n > 1 and mu(1) = 1. - Alois P. Heinz, Aug 13 2008
a(n) = A174725(n) - A174726(n). - Mats Granvik, Mar 28 2010
a(n) = first column in the matrix inverse of a triangular table with the definition: T(1, 1) = 1, n > 1: T(n, 1) is any number or sequence, k = 2: T(n, 2) = T(n, k-1) - T(n-1, k), k > 2 and n >= k: T(n,k) = (Sum_{i = 1..k-1} T(n-i, k-1)) - (Sum_{i = 1..k-1} T(n-i, k)). - Mats Granvik, Jun 12 2010
Product_{n >= 1} (1-x^n)^(-a(n)/n) = exp(x) (product form of the exponential function). - Joerg Arndt, May 13 2011
a(n) = Sum_{k=1..n, gcd(k,n)=1} exp(2*Pi*i*k/n), the sum over the primitive n-th roots of unity. See the Apostol reference, p. 48, Exercise 14 (b). - Wolfdieter Lang, Jun 13 2011
mu(n) = Sum_{k=1..n} A191898(n,k)*exp(-i*2*Pi*k/n)/n. (conjecture). - Mats Granvik, Nov 20 2011
Sum_{k=1..n} a(k)*floor(n/k) = 1 for n >= 1. - Peter Luschny, Feb 10 2012
a(n) = floor(omega(n)/bigomega(n))*(-1)^omega(n) = floor(A001221(n)/A001222(n))*(-1)^A001221(n). - Enrique Pérez Herrero, Apr 27 2012
Multiplicative with a(p^e) = binomial(1, e) * (-1)^e. - Enrique Pérez Herrero, Jan 19 2013
G.f. A(x) satisfies: x^2/A(x) = Sum_{n>=1} A( x^(2*n)/A(x)^n ). - Paul D. Hanna, Apr 19 2016
a(n) = -A008966(n)*A008836(n)/(-1)^A005361(n) = -floor(rad(n)/n)Lambda(n)/(-1)^tau(n/rad(n)). - Anthony Browne, May 17 2016
a(n) = Kronecker delta of A001221(n) and A001222(n) (which is A008966) multiplied by A008836(n). - Eric Desbiaux, Mar 15 2017
a(n) = A132971(A156552(n)). - Antti Karttunen, May 30 2017
Conjecture: a(n) = Sum_{k>=0} (-1)^(k-1)*binomial(A001222(n)-1, k)*binomial(A001221(n)-1+k, k), for n > 1. Verified for the first 100000 terms. - Mats Granvik, Sep 08 2018
From Peter Bala, Mar 15 2019: (Start)
Sum_{n >= 1} mu(n)*x^n/(1 + x^n) = x - 2*x^2. See, for example, Pólya and Szegő, Part V111, Chap. 1, No. 71.
Sum_{n >= 1} (-1)^(n+1)*mu(n)*x^n/(1 - x^n) = x + 2*(x^2 + x^4 + x^8 + x^16 + ...).
Sum_{n >= 1} (-1)^(n+1)*mu(n)*x^n/(1 + x^n) = x - 2*(x^4 + x^8 + x^16 + x^32 + ...).
Sum_{n >= 1} |mu(n)|*x^n/(1 - x^n) = Sum_{n >= 1} (2^w(n))*x^n, where w(n) is the number of different prime factors of n (Hardy and Wright, Chapter XVI, Theorem 264).
Sum_{n odd} |mu(n)|*x^n/(1 + x^(2*n)) = Sum_{n in S_1} (2^w_1(n))*x^n, where S_1 = {1, 5, 13, 17, 25, 29, ...} is the multiplicative semigroup of positive integers generated by 1 and the primes p = 1 (mod 4), and w_1(n) is the number of different prime factors p = 1 (mod 4) of n.
Sum_{n odd} (-1)^((n-1)/2)*mu(n)*x^n/(1 - x^(2*n)) = Sum_{n in S_3} (2^w_3(n))*x^n, where S_3 = {1, 3, 7, 9, 11, 19, 21, ...} is the multiplicative semigroup of positive integers generated by 1 and the primes p = 3 (mod 4), and where w_3(n) is the number of different prime factors p = 3 (mod 4) of n. (End)
G.f. A(x) satisfies: A(x) = x - Sum_{k>=2} A(x^k). - Ilya Gutkovskiy, May 11 2019
a(n) = sign(A023900(n)) * [A007947(n) = n] where [] is the Iverson bracket. - I. V. Serov, May 15 2019
a(n) = Sum_{k = 1..n} gcd(k, n)*a(gcd(k, n)) = Sum_{d divides n} a(d)*d*phi(n/d). - Peter Bala, Jan 16 2024

A023900 Dirichlet inverse of Euler totient function (A000010).

Original entry on oeis.org

1, -1, -2, -1, -4, 2, -6, -1, -2, 4, -10, 2, -12, 6, 8, -1, -16, 2, -18, 4, 12, 10, -22, 2, -4, 12, -2, 6, -28, -8, -30, -1, 20, 16, 24, 2, -36, 18, 24, 4, -40, -12, -42, 10, 8, 22, -46, 2, -6, 4, 32, 12, -52, 2, 40, 6, 36, 28, -58, -8, -60, 30, 12, -1, 48, -20, -66, 16, 44, -24, -70, 2, -72, 36, 8, 18, 60, -24, -78, 4, -2
Offset: 1

Views

Author

Keywords

Comments

Also called reciprocity balance of n.
Apart from different signs, same as Sum_{d divides n} core(d)*mu(n/d), where core(d) (A007913) is the squarefree part of d. - Benoit Cloitre, Apr 06 2002
Main diagonal of A191898. - Mats Granvik, Jun 19 2011

Examples

			x - x^2 - 2*x^3 - x^4 - 4*x^5 + 2*x^6 - 6*x^7 - x^8 - 2*x^9 + 4*x^10 - ...
		

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 37.
  • D. M. Burton, Elementary Number Theory, Allyn and Bacon Inc. Boston, MA, 1976, p. 125.

Crossrefs

Moebius transform is A055615.
Cf. A027748, A173557 (gives the absolute values), A295876.
Cf. A253905 (Dgf at s=3).

Programs

  • Haskell
    a023900 1 = 1
    a023900 n = product $ map (1 -) $ a027748_row n
    -- Reinhard Zumkeller, Jun 01 2015
    
  • Maple
    A023900 := n -> mul(1-i,i=numtheory[factorset](n)); # Peter Luschny, Oct 26 2010
  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ d MoebiusMu @ d, { d, Divisors[n]}]] (* Michael Somos, Jul 18 2011 *)
    Array[ Function[ n, 1/Plus @@ Map[ #*MoebiusMu[ # ]/EulerPhi[ # ]&, Divisors[ n ] ] ], 90 ]
    nmax = 81; Drop[ CoefficientList[ Series[ Sum[ MoebiusMu[k] k x^k/(1 - x^k), {k, 1, nmax} ], {x, 0, nmax} ], x ], 1 ] (* Stuart Clary, Apr 15 2006 *)
    t[n_, 1] = 1; t[1, k_] = 1; t[n_, k_] :=  t[n, k] = If[n < k, If[n > 1 && k > 1, Sum[-t[k - i, n], {i, 1, n - 1}], 0], If[n > 1 && k > 1, Sum[-t[n - i, k], {i, 1, k - 1}], 0]]; Table[t[n, n], {n, 36}] (* Mats Granvik, Robert G. Wilson v, Jun 25 2011 *)
    Table[DivisorSum[m, # MoebiusMu[#] &], {m, 90}] (* Jan Mangaldan, Mar 15 2013 *)
    f[p_, e_] := (1 - p); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 14 2020 *)
  • PARI
    {a(n) = direuler( p=2, n, (1 - p*X) / (1 - X))[n]}
    
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, d * moebius(d)))} /* Michael Somos, Jul 18 2011 */
    
  • PARI
    a(n)=sumdivmult(n,d, d*moebius(d)) \\ Charles R Greathouse IV, Sep 09 2014
    
  • Python
    from sympy import divisors, mobius
    def a(n): return sum([d*mobius(d) for d in divisors(n)]) # Indranil Ghosh, Apr 29 2017
    
  • Python
    from math import prod
    from sympy import primefactors
    def A023900(n): return prod(1-p for p in primefactors(n)) # Chai Wah Wu, Sep 08 2023
    
  • Scheme
    ;; With memoization-macro definec.
    (definec (A023900 n) (if (= 1 n) 1 (* (- 1 (A020639 n)) (A023900 (A028234 n))))) ;; Antti Karttunen, Nov 28 2017

Formula

a(n) = Sum_{ d divides n } d*mu(d) = Product_{p|n} (1-p).
a(n) = 1 / (Sum_{ d divides n } mu(d)*d/phi(d)).
Dirichlet g.f.: zeta(s)/zeta(s-1). - Michael Somos, Jun 04 2000
a(n+1) = det(n+1)/det(n) where det(n) is the determinant of the n X n matrix M_(i, j) = i/gcd(i, j) = lcm(i, j)/j. - Benoit Cloitre, Aug 19 2003
a(n) = phi(n)*moebius(A007947(n))*A007947(n)/n. Logarithmic g.f.: Sum_{n >= 1} a(n)*x^n/n = log(F(x)) where F(x) is the g.f. of A117209 and satisfies: 1/(1-x) = Product_{n >= 1} F(x^n). - Paul D. Hanna, Mar 03 2006
G.f.: A(x) = Sum_{k >= 1} mu(k) k x^k/(1 - x^k) where mu(k) is the Moebius (Mobius) function, A008683. - Stuart Clary, Apr 15 2006
G.f.: A(x) is x times the logarithmic derivative of A117209(x). - Stuart Clary, Apr 15 2006
Row sums of triangle A134842. - Gary W. Adamson, Nov 12 2007
G.f.: x/(1-x) = Sum_{n >= 1} a(n)*x^n/(1-x^n)^2. - Paul D. Hanna, Aug 16 2008
a(n) = phi(rad(n)) *(-1)^omega(n) = A000010(A007947(n)) *(-1)^A001221(n). - Enrique Pérez Herrero, Aug 24 2010
a(n) = Product_{i = 2..n} (1-i)^( (pi(i)-pi(i-1)) * floor( (cos(n*Pi/i))^2 ) ), where pi = A000720, Pi = A000796. - Wesley Ivan Hurt, May 24 2013
a(n) = -limit of zeta(s)*(Sum_{d divides n} moebius(d)/exp(d)^(s-1)) as s->1 for n>1. - Mats Granvik, Jul 31 2013
a(n) = Sum_{d divides n} mu(d)*rad(d), where rad is A007947. - Enrique Pérez Herrero, May 29 2014
Conjecture for n>1: Let n = 2^(A007814(n))*m = 2^(ruler(n))*odd_part(n), where m = A000265(n), then a(n) = (-1)^(m=n)*(0+Sum_{i=1..m and gcd(i,m)=1} (4*min(i,m-i)-m)) = (-1)^(m1} (4*min(i,m-i)-m)). - I. V. Serov, May 02 2017
a(n) = (-1)^A001221(n) * A173557(n). - R. J. Mathar, Nov 02 2017
a(1) = 1; for n > 1, a(n) = (1-A020639(n)) * a(A028234(n)), because multiplicative with a(p^e) = (1-p). - Antti Karttunen, Nov 28 2017
a(n) = 1 - Sum_{d|n, d > 1} d*a(n/d). - Ilya Gutkovskiy, Apr 26 2019
From Richard L. Ollerton, May 07 2021: (Start)
For n>1, Sum_{k=1..n} a(gcd(n,k)) = 0.
For n>1, Sum_{k=1..n} a(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)) = 0. (End)
a(n) = rad(n)*(-1)^omega(n)*phi(n)/n = A062953(n)*A000010(n)/n. - Amrit Awasthi, Jan 30 2022
a(n) = mu(n)*phi(n) = A008683(n)*A000010(n) whenever n is squarefree. - Amrit Awasthi, Feb 03 2022
From Peter Bala, Jan 24 2024: (Start)
a(n) = Sum_{d divides n} core(d)*mu(d). Cf. Comment by Benoit Cloitre, dated Apr 06 2002.
a(n) = Sum_{d|n, e|n} n/gcd(d, e) * mu(n/d) * mu(n/e) (the sum is a multiplicative function of n by Tóth, and takes the value 1 - p for n = p^e, a prime power). (End)
From Peter Bala, Feb 01 2024: (Start)
G.f. Sum_{n >= 1} (2*n-1)*moebius(2*n-1)*x^(2*n-1)/(1 + x^(2n-1)).
a(n) = (-1)^(n+1) * Sum_{d divides n, d odd} d*moebius(d). (End)

A014963 Exponential of Mangoldt function M(n): a(n) = 1 unless n is a prime or prime power, in which case a(n) = that prime.

Original entry on oeis.org

1, 2, 3, 2, 5, 1, 7, 2, 3, 1, 11, 1, 13, 1, 1, 2, 17, 1, 19, 1, 1, 1, 23, 1, 5, 1, 3, 1, 29, 1, 31, 2, 1, 1, 1, 1, 37, 1, 1, 1, 41, 1, 43, 1, 1, 1, 47, 1, 7, 1, 1, 1, 53, 1, 1, 1, 1, 1, 59, 1, 61, 1, 1, 2, 1, 1, 67, 1, 1, 1, 71, 1, 73, 1, 1, 1, 1, 1, 79, 1, 3, 1, 83, 1, 1, 1, 1, 1, 89, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Keywords

Comments

There are arbitrarily long runs of ones (Sierpiński). - Franz Vrabec, Sep 26 2005
a(n) is the smallest positive integer such that n divides Product_{k=1..n} a(k), for all positive integers n. - Leroy Quet, May 01 2007
For n>1, resultant of the n-th cyclotomic polynomial with the 1st cyclotomic polynomial x-1. - Ralf Stephan, Aug 14 2013
A368749(n) is the smallest prime p such that the interval [a(p), a(q)] contains n 1's; q = nextprime(p), n >= 0. - David James Sycamore, Mar 21 2024

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, Section 17.7.
  • I. Vardi, Computational Recreations in Mathematica. Reading, MA: Addison-Wesley, pp. 146-147, 152-153 and 249, 1991.

Crossrefs

Apart from initial 1, same as A020500. With ones replaced by zeros, equal to A120007.
Cf. A003418, A007947, A008683, A008472, A008578, A048671 (= n/a(n)), A072107 (partial sums), A081386, A081387, A099636, A100994, A100995, A140255 (inverse Mobius transform), A140254 (Mobius transform), A297108, A297109, A340675, A000027, A348846, A368749.
First column of A140256. Row sums of triangle A140581.
Cf. also A140579, A140580 (= n*a(n)).

Programs

  • Haskell
    a014963 1 = 1
    a014963 n | until ((> 0) . (`mod` spf)) (`div` spf) n == 1 = spf
              | otherwise = 1
              where spf = a020639 n
    -- Reinhard Zumkeller, Sep 09 2011
    
  • Maple
    a := n -> if n < 2 then 1 else numtheory[factorset](n); if 1 < nops(%) then 1 else op(%) fi fi; # Peter Luschny, Jun 23 2009
    A014963 := n -> n/ilcm(op(numtheory[divisors](n) minus {1,n}));
    seq(A014963(i), i=1..69); # Peter Luschny, Mar 23 2011
    # The following is Nowicki's LCM-Transform - N. J. A. Sloane, Jan 09 2024
    LCMXFM:=proc(a)  local p,q,b,i,k,n:
    if whattype(a) <> list then RETURN([]); fi:
    n:=nops(a):
    b:=[a[1]]: p:=[a[1]];
    for i from 2 to n do q:=[op(p),a[i]]; k := lcm(op(q))/lcm(op(p));
    b:=[op(b),k]; p:=q;; od:
    RETURN(b); end:
    # Alternative, to be called by 'seq' as shown, not for a single n.
    a := proc(n) option remember; local i; global f; f := ifelse(n=1, 1, f*n);
    iquo(f, mul(a(i)^iquo(n, i), i=1..n-1)) end: seq(a(n), n=1..95); # Peter Luschny, Apr 05 2025
  • Mathematica
    a[n_?PrimeQ] := n; a[n_/;Length[FactorInteger[n]] == 1] := FactorInteger[n][[1]][[1]]; a[n_] := 1; Table[a[n], {n, 95}] (* Alonso del Arte, Jan 16 2011 *)
    a[n_] := Exp[ MangoldtLambda[n]]; Table[a[n], {n, 95}] (* Jean-François Alcover, Jul 29 2013 *)
    Ratios[LCM @@ # & /@ Table[Range[n], {n, 100}]] (* Horst H. Manninger, Mar 08 2024 *)
    Table[Which[PrimeQ[n],n,PrimePowerQ[n],Surd[n,FactorInteger[n][[-1,2]]],True,1],{n,100}] (* Harvey P. Dale, Mar 01 2025 *)
  • PARI
    A014963(n)=
    {
        local(r);
        if( isprime(n), return(n));
        if( ispower(n,,&r) && isprime(r), return(r) );
        return(1);
    }  \\ Joerg Arndt, Jan 16 2011
    
  • PARI
    a(n)=ispower(n,,&n);if(isprime(n),n,1) \\ Charles R Greathouse IV, Jun 10 2011
    
  • Python
    from sympy import factorint
    def A014963(n):
        y = factorint(n)
        return list(y.keys())[0] if len(y) == 1 else 1
    print([A014963(n) for n in range(1, 71)]) # Chai Wah Wu, Sep 04 2014
  • Sage
    def A014963(n) : return simplify(exp(add(moebius(d)*log(n/d) for d in divisors(n))))
    [A014963(n) for n in (1..50)]  # Peter Luschny, Feb 02 2012
    
  • Sage
    def a(n):
        if n == 1: return 1
        return prod(1 - E(n)**k for k in ZZ(n).coprime_integers(n+1))
    [a(n) for n in range(1, 14)] # F. Chapoton, Mar 17 2020
    

Formula

a(n) = A003418(n) / A003418(n-1) = lcm {1..n} / lcm {1..n-1}. [This is equivalent to saying that this sequence is the LCM-transform (as defined by Nowicki, 2013) of the positive integers. - David James Sycamore, Jan 09 2024.]
a(n) = 1/Product_{d|n} d^mu(d) = Product_{d|n} (n/d)^mu(d). - Vladeta Jovovic, Jan 24 2002
a(n) = gcd( C(n+1,1), C(n+2,2), ..., C(2n,n) ) where C(n,k) = binomial(n,k). - Benoit Cloitre, Jan 31 2003
a(n) = gcd(C(n,1), C(n+1,2), C(n+2,3), ...., C(2n-2,n-1)), where C(n,k) = binomial(n,k). - Benoit Cloitre, Jan 31 2003; corrected by Ant King, Dec 27 2005
Note: a(n) != gcd(A008472(n), A007947(n)) = A099636(n), GCD of rad(n) and sopf(n) (this fails for the first time at n=30), since a(30) = 1 but gcd(rad(30), sopf(30)) = gcd(30,10) = 10.
a(n)^A100995(n) = A100994(n). - N. J. A. Sloane, Feb 20 2005
a(n) = Product_{k=1..n-1, if(gcd(n, k)=1, 1-exp(2*Pi*i*k/n), 1)}, i=sqrt(-1); a(n) = n/A048671(n). - Paul Barry, Apr 15 2005
Sum_{n>=1} (log(a(n))-1)/n = -2*A001620 [Bateman Manuscript Project Vol III, ed. by Erdelyi et al.]. - R. J. Mathar, Mar 09 2008
n*a(n) = A140580(n) = n^2/A048671(n) = A140579 * [1,2,3,...]. - Gary W. Adamson, May 17 2008
a(n) = (2*Pi)^phi(n) / Product_{gcd(n,k)=1} Gamma(k/n)^2 (for n > 1). - Peter Luschny, Aug 08 2009
a(n) = A166140(n) / A166142(n). - Mats Granvik, Oct 08 2009
a(n) = GCD of rows in A167990. - Mats Granvik, Nov 16 2009
a(n) = A010055(n)*(A007947(n) - 1) + 1. - Reinhard Zumkeller, Mar 26 2010
a(n) = 1 + (A007947(n)-1) * floor(1/A001221(n)), for n>1. - Enrique Pérez Herrero, Jun 01 2011
a(n) = Product_{k=1..n-1} if(gcd(k,n)=1, 2*sin(Pi*k/n), 1). - Peter Luschny, Jun 09 2011
a(n) = exp(Sum_{k>=1} A191898(n,k)/k) for n>1 (conjecture). - Mats Granvik, Jun 19 2011
Dirichlet g.f.: Sum_{n>0} e^Lambda(n)/n^s = Zeta(s) + Sum_{p prime} Sum_{k>0} (p-1)/p^(k*s) = Zeta(s) - ppzeta(s) + Sum(p prime, p/(p^s-1)); for a ppzeta definition see A010055. - Enrique Pérez Herrero, Jan 19 2013
a(n) = exp(lim_{s->1} zeta(s)*Sum_{d|n} moebius(d)/d^(s-1)) for n>1. - Mats Granvik, Jul 31 2013
a(n) = gcd_{k=1..n-1} binomial(n,k) for n > 1, see A014410. - Michel Marcus, Dec 08 2015 [Corrected by Jinyuan Wang, Mar 20 2020]
a(n) = 1 + Sum_{k=2..n} (k-1)*A010051(k)*(floor(k^n/n) - floor((k^n - 1)/n)). - Anthony Browne, Jun 16 2016
The Dirichlet series for log(a(n)) = Lambda(n) is given by the logarithmic derivative of the zeta function -zeta'(s)/zeta(s). - Mats Granvik, Oct 30 2016
a(n) = A008578(1+A297109(n)), For all n >= 1, Product_{d|n} a(d) = n. - Antti Karttunen, Feb 01 2021
Product_{k=1..floor(n/2)} Product_{j=1..floor(n/k)} a(j) = n!. - Ammar Khatab, Jan 28 2025

Extensions

Additional reference from Eric W. Weisstein, Jun 29 2008
Showing 1-10 of 40 results. Next