A309229 Square array read by upwards antidiagonals: T(n,k) = Sum_{i=1..n} A191898(i,k).
1, 2, 1, 3, 0, 1, 4, 1, 2, 1, 5, 0, 0, 0, 1, 6, 1, 1, 1, 2, 1, 7, 0, 2, 0, 3, 0, 1, 8, 1, 0, 1, 4, -2, 2, 1, 9, 0, 1, 0, 0, -3, 3, 0, 1, 10, 1, 2, 1, 1, -2, 4, 1, 2, 1, 11, 0, 0, 0, 2, 0, 5, 0, 0, 0, 1, 12, 1, 1, 1, 3, 1, 6, 1, 1, 1, 2, 1, 13, 0, 2, 0, 4, 0, 0, 0, 2, 0, 3, 0, 1, 14, 1, 0, 1, 0, -2, 1, 1, 0, -4, 4, -2, 2, 1
Offset: 1
Examples
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, ... 3, 1, 0, 1, 3, -2, 3, 1, 0, 1, 3, -2, 3, 1, ... 4, 0, 1, 0, 4, -3, 4, 0, 1, 0, 4, -3, 4, 0, ... 5, 1, 2, 1, 0, -2, 5, 1, 2, -4, 5, -2, 5, 1, ... 6, 0, 0, 0, 1, 0, 6, 0, 0, -5, 6, 0, 6, 0, ... 7, 1, 1, 1, 2, 1, 0, 1, 1, -4, 7, 1, 7, -6, ... 8, 0, 2, 0, 3, 0, 1, 0, 2, -5, 8, 0, 8, -7, ... 9, 1, 0, 1, 4, -2, 2, 1, 0, -4, 9, -2, 9, -6, ... 10, 0, 1, 0, 0, -3, 3, 0, 1, 0, 10, -3, 10, -7, ... 11, 1, 2, 1, 1, -2, 4, 1, 2, 1, 0, -2, 11, -6, ... 12, 0, 0, 0, 2, 0, 5, 0, 0, 0, 1, 0, 12, -7, ... 13, 1, 1, 1, 3, 1, 6, 1, 1, 1, 2, 1, 0, -6, ... 14, 0, 2, 0, 4, 0, 0, 0, 2, 0, 3, 0, 1, 0, ... ...
Links
- Mats Granvik, Attempt at proof of the conjectured square root order asymptotics for the sequence constructed from this matrix.
- Mats Granvik, Mathematica MatrixPlot of 1000 times 1000 size matrix
- Mats Granvik, Mathematica program for the recurrence
- Mats Granvik, Mathematica program to compute the sequence with the conjectured asymptotic sqrt(8*n)
- Mathematics Stack Exchange, Do these series converge to the von Mangoldt function?
Programs
-
Mathematica
f[n_] := DivisorSum[n, MoebiusMu[#] # &]; nn = 14; A = Accumulate[Table[Table[f[GCD[n, k]], {k, 1, nn}], {n, 1, nn}]]; Flatten[Table[Table[A[[n - k + 1, k]], {k, 1, n}], {n, 1, nn}]] (* Mats Granvik, Jun 09 2020 *)
Formula
Recurrence:
T(n, 1) = [n >= 1]*n;
T(1, k) = 1;
T(n, k) = [n > k]*T(n - k, k) + [n <= k](Sum_{i=0..n-1} T(n - 1, k - i) - Sum_{i=1..n-1} T(n, k - i)). - Mats Granvik, Jun 19 2020
T(n,k) = Sum_{i=1..n} A191898(i,k).
Comments