cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 166 results. Next

A319340 Sum of Euler totient function and its Dirichlet inverse: a(n) = A000010(n) + A023900(n).

Original entry on oeis.org

2, 0, 0, 1, 0, 4, 0, 3, 4, 8, 0, 6, 0, 12, 16, 7, 0, 8, 0, 12, 24, 20, 0, 10, 16, 24, 16, 18, 0, 0, 0, 15, 40, 32, 48, 14, 0, 36, 48, 20, 0, 0, 0, 30, 32, 44, 0, 18, 36, 24, 64, 36, 0, 20, 80, 30, 72, 56, 0, 8, 0, 60, 48, 31, 96, 0, 0, 48, 88, 0, 0, 26, 0, 72, 48, 54, 120, 0, 0, 36, 52, 80, 0, 12, 128, 84, 112, 50, 0, 16
Offset: 1

Views

Author

Antti Karttunen, Sep 17 2018

Keywords

Crossrefs

Programs

Formula

a(n) = A000010(n) + A023900(n).
a(n) = A318833(n) - A051953(n).

A323915 a(n) = A023900(A005940(1+n)).

Original entry on oeis.org

1, -1, -2, -1, -4, 2, -2, -1, -6, 4, 8, 2, -4, 2, -2, -1, -10, 6, 12, 4, 24, -8, 8, 2, -6, 4, 8, 2, -4, 2, -2, -1, -12, 10, 20, 6, 40, -12, 12, 4, 60, -24, -48, -8, 24, -8, 8, 2, -10, 6, 12, 4, 24, -8, 8, 2, -6, 4, 8, 2, -4, 2, -2, -1, -16, 12, 24, 10, 48, -20, 20, 6, 72, -40, -80, -12, 40, -12, 12, 4, 120, -60, -120, -24, -240, 48, -48
Offset: 0

Views

Author

Antti Karttunen, Feb 22 2019

Keywords

Crossrefs

Programs

  • PARI
    A323915(n) = { my(m1=1, p=2); while(n, if(!(n%2), p=nextprime(1+p), if(1==(n%4), m1 *= (1-p))); n>>=1); (m1); };
    
  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ From A005940
    A023900(n) = sumdivmult(n, d, d*moebius(d)); \\ From A023900
    A323915(n) = A023900(A005940(1+n));

Formula

a(n) = A023900(A005940(1+n)).

A130054 Inverse Moebius transform of A023900.

Original entry on oeis.org

1, 0, -1, -1, -3, 0, -5, -2, -3, 0, -9, 1, -11, 0, 3, -3, -15, 0, -17, 3, 5, 0, -21, 2, -7, 0, -5, 5, -27, 0, -29, -4, 9, 0, 15, 3, -35, 0, 11, 6, -39, 0, -41, 9, 9, 0, -45, 3, -11, 0, 15, 11, -51, 0, 27, 10, 17, 0, -57, -3, -59, 0, 15, -5, 33, 0, -65, 15, 21
Offset: 1

Views

Author

Gary W. Adamson, May 04 2007

Keywords

Comments

Multiplicative because A023900 is. - Andrew Howroyd, Aug 03 2018

Crossrefs

Programs

  • Magma
    [&+[d*MoebiusMu(d)*NumberOfDivisors(n div d):d in Divisors(n)]:n in [1..70]]; // Marius A. Burtea, Nov 17 2019
  • Maple
    with(numtheory): seq(add(d*mobius(d)*tau(n/d), d in divisors(n)), n=1..60); # Ridouane Oudra, Nov 17 2019
  • Mathematica
    b[n_] := Sum[d MoebiusMu[d], {d, Divisors[n]}];
    a[n_] := Sum[b[n/d], {d, Divisors[n]}];
    a /@ Range[1, 100] (* Jean-François Alcover, Sep 20 2019, from PARI *)
    f[p_, e_] := 1-(p-1)*e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 23 2020 *)
  • PARI
    \\ here b(n) is A023900
    b(n)={sumdivmult(n, d, d*moebius(d))}
    a(n)={sumdiv(n, d, b(n/d))} \\ Andrew Howroyd, Aug 03 2018
    

Formula

A126988 * A130054 = d(n), A000005: (1, 2, 2, 3, 2, 4, 2, 4, 3, 4, ...).
a(n) = Sum_{d|n} A023900(n/d). - Andrew Howroyd, Aug 03 2018
a(n) = Sum_{d|n} d*mu(d)*tau(n/d). - Ridouane Oudra, Nov 17 2019
From Werner Schulte, Sep 06 2020: (Start)
Multiplicative with a(p^e) = 1 - (p-1) * e for prime p and e >= 0.
Dirichlet g.f.: (zeta(s))^2 / zeta(s-1).
Dirichlet convolution with A062570 equals A001511.
Dirichlet convolution with A018804 equals A000203.
Dirichlet inverse of A007431. (End)
a(n) = 1 - Sum_{k=1..n-1} a(gcd(n,k)). - Ilya Gutkovskiy, Nov 06 2020

Extensions

Name changed and terms a(11) and beyond from Andrew Howroyd, Aug 03 2018

A295886 Filter-sequence combining A003557(n) and A023900(n).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 21, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 34, 38, 39, 13, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 54, 71, 72, 73, 67, 74, 75, 76, 52, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 73
Offset: 1

Views

Author

Antti Karttunen, Dec 03 2017

Keywords

Comments

For all i, j: a(i) = a(j) => A295887(i) = A295887(j).

Crossrefs

Programs

  • PARI
    allocatemem(2^30);
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A003557(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2] = max(0,f[i, 2]-1)); factorback(f); };
    A023900(n) = sumdivmult(n, d, d*moebius(d)); \\ This function from Charles R Greathouse IV, Sep 09 2014
    v295876 = rgs_transform(vector(up_to,n,A023900(n)))
    A295876(n) = v295876[n];
    Anotsubmitted6(n) = (1/2)*(2 + ((A003557(n)+A295876(n))^2) - A003557(n) - 3*A295876(n));
    write_to_bfile(1,rgs_transform(vector(up_to,n,Anotsubmitted6(n))),"b295886.txt");

Formula

Restricted growth sequence transform of sequence a(n) = (1/2)*(2 + ((A003557(n) + A295876(n))^2) - A003557(n) - 3*A295876(n)).

A318833 a(n) = n + A023900(n).

Original entry on oeis.org

2, 1, 1, 3, 1, 8, 1, 7, 7, 14, 1, 14, 1, 20, 23, 15, 1, 20, 1, 24, 33, 32, 1, 26, 21, 38, 25, 34, 1, 22, 1, 31, 53, 50, 59, 38, 1, 56, 63, 44, 1, 30, 1, 54, 53, 68, 1, 50, 43, 54, 83, 64, 1, 56, 95, 62, 93, 86, 1, 52, 1, 92, 75, 63, 113, 46, 1, 84, 113, 46, 1, 74, 1, 110, 83, 94, 137, 54, 1, 84, 79, 122, 1, 72, 149, 128, 143, 98, 1, 82
Offset: 1

Views

Author

Antti Karttunen, Sep 16 2018

Keywords

Crossrefs

Programs

Formula

a(n) = n + A023900(n).

A323405 Lexicographically earliest sequence such that for all i, j, a(i) = a(j) => f(i) = f(j) where f(n) = [A003557(n), A023900(n), A063994(n)] for all other numbers, except f(n) = 0 for odd primes.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 6, 7, 8, 3, 9, 3, 10, 11, 12, 3, 13, 3, 14, 15, 16, 3, 17, 18, 19, 20, 21, 3, 22, 3, 23, 24, 25, 26, 27, 3, 28, 26, 29, 3, 30, 3, 31, 32, 33, 3, 34, 35, 36, 37, 38, 3, 39, 40, 41, 42, 43, 3, 44, 3, 45, 46, 47, 48, 49, 3, 50, 51, 52, 3, 53, 3, 54, 55, 56, 57, 58, 3, 59, 60, 61, 3, 62, 63, 64, 65, 66, 3, 67, 68, 69, 57, 70, 71, 72, 3, 73, 74, 75, 3
Offset: 1

Views

Author

Antti Karttunen, Jan 13 2019

Keywords

Comments

For all i, j:
A305801(i) = A305801(j) => a(i) = a(j),
a(i) = a(j) => A323371(i) = A323371(j),
a(i) = a(j) => A247074(i) = A247074(j).

Crossrefs

Differs from A323370 for the first time at n=78, where a(78) = 58, while A323370(78) = 52.
Cf. also A323374.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003557(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2] = max(0,f[i, 2]-1)); factorback(f); };
    A023900(n) = sumdivmult(n, d, d*moebius(d)); \\ From A023900
    A063994(n) = { my(f=factor(n)[, 1]); prod(i=1, #f, gcd(f[i]-1, n-1)); }; \\ From A063994
    Aux323405(n) = if((n>2)&&isprime(n),0,[A003557(n), A023900(n), A063994(n)]);
    v323405 = rgs_transform(vector(up_to, n, Aux323405(n)));
    A323405(n) = v323405[n];

A301591 Primes p that have other solutions x to A023900(x) = A023900(p) than a power of p.

Original entry on oeis.org

13, 37, 41, 61, 73, 89, 97, 109, 113, 157, 181, 193, 233, 241, 277, 281, 313, 337, 349, 353, 397, 401, 409, 421, 433, 449, 457, 461, 521, 541, 577, 593, 601, 613, 617, 641, 661, 673, 701, 733, 757, 761, 769, 821, 829, 877, 881, 929, 937, 953, 997, 1009, 1013, 1021, 1033, 1049
Offset: 1

Views

Author

Michel Marcus, Mar 24 2018

Keywords

Comments

Contains A005383 \ {3, 5} as a subsequence, since if (p+1)/2 = q > 3 is prime, then A023900(2*3*q) = (1-2)*(1-3)*(1-q) = 1-p = A023900(p). - M. F. Hasler, Aug 14 2021

Examples

			13 is a term because A023900(42) = A023900(13), where 42 is not a power of 13.
		

Crossrefs

Complement of A301590.
A005383 \ {3,5} is a subsequence.

Programs

  • PARI
    f(n) = sumdivmult(n, d, d*moebius(d)); /* This is A023900 */
    isok(p, vp) = {for (k=p+1, p^2-1, if (f(k) == vp, return (0)); ); return (1); }
    lista(nn) = {forprime(p=2, nn, vp = f(p); if (!isok(p, vp), print1(p, ", ")); ); }

A323370 Lexicographically earliest sequence such that for all i, j, a(i) = a(j) => f(i) = f(j) where f(n) = [A000035(n), A003557(n), A023900(n)] for all other numbers, except f(n) = 0 for odd primes.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 6, 7, 8, 3, 9, 3, 10, 11, 12, 3, 13, 3, 14, 15, 16, 3, 17, 18, 19, 20, 21, 3, 22, 3, 23, 24, 25, 26, 27, 3, 28, 26, 29, 3, 30, 3, 31, 32, 33, 3, 34, 35, 36, 37, 38, 3, 39, 40, 41, 42, 43, 3, 44, 3, 45, 46, 47, 48, 49, 3, 50, 51, 52, 3, 53, 3, 54, 55, 56, 57, 52, 3, 58, 59, 60, 3, 61, 62, 63, 64, 65, 3, 66, 67, 68, 57, 69, 67, 70, 3, 71, 72, 73, 3, 74, 3, 75, 76
Offset: 1

Views

Author

Antti Karttunen, Jan 13 2019

Keywords

Comments

Restricted growth sequence transform of function f, defined as f(n) = 0 when n is an odd prime, and f(n) = [A000035(n), A003557(n), A023900(n)] for all other numbers.
For all i, j:
A305801(i) = A305801(j) => a(i) = a(j),
a(i) = a(j) => A323367(i) = A323367(j),
a(i) = a(j) => A323371(i) = A323371(j).

Crossrefs

Differs from A323405 for the first time at n=78, where a(78) = 52, while A323405(78) = 58.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003557(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2] = max(0,f[i, 2]-1)); factorback(f); };
    A023900(n) = sumdivmult(n, d, d*moebius(d)); \\ From A023900
    Aux323370(n) = if((n>2)&&isprime(n),0,[(n%2), A003557(n), A023900(n)]);
    v323370 = rgs_transform(vector(up_to, n, Aux323370(n)));
    A323370(n) = v323370[n];

A349373 Dirichlet convolution of Kimberling's paraphrases (A003602) with Dirichlet inverse of Euler phi (A023900).

Original entry on oeis.org

1, 0, 0, -1, -1, 0, -2, -2, -1, 0, -4, 0, -5, 0, 2, -3, -7, 0, -8, 1, 3, 0, -10, 0, -3, 0, -2, 2, -13, 0, -14, -4, 5, 0, 8, 1, -17, 0, 6, 2, -19, 0, -20, 4, 5, 0, -22, 0, -5, 0, 8, 5, -25, 0, 14, 4, 9, 0, -28, -2, -29, 0, 8, -5, 17, 0, -32, 7, 11, 0, -34, 2, -35, 0, 4, 8, 23, 0, -38, 3, -3, 0, -40, -3, 23, 0, 14, 8
Offset: 1

Views

Author

Antti Karttunen, Nov 15 2021

Keywords

Crossrefs

Cf. A347954, A347955, A347956, A349136, A349370, A349371, A349372, A349374, A349375, A349390, A349431, A349444, A349447 for Dirichlet convolutions of other sequences with A003602.

Programs

  • Mathematica
    f[p_, e_] := (1 - p); d[1] = 1; d[n_] := Times @@ f @@@ FactorInteger[n]; k[n_] := (n / 2^IntegerExponent[n, 2] + 1)/2; a[n_] := DivisorSum[n, k[#] * d[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 16 2021 *)
  • PARI
    A003602(n) = (1+(n>>valuation(n,2)))/2;
    A023900(n) = factorback(apply(p -> 1-p, factor(n)[, 1]));
    A349373(n) = sumdiv(n,d,A003602(n/d)*A023900(d));

Formula

a(n) = Sum_{d|n} A003602(n/d) * A023900(d).

A295876 Restricted growth sequence transform of A023900, Product_{p|n} (1-p).

Original entry on oeis.org

1, 2, 3, 2, 4, 5, 6, 2, 3, 7, 8, 5, 9, 10, 11, 2, 12, 5, 13, 7, 14, 15, 16, 5, 4, 14, 3, 10, 17, 18, 19, 2, 20, 21, 22, 5, 23, 24, 22, 7, 25, 9, 26, 15, 11, 27, 28, 5, 6, 7, 29, 14, 30, 5, 31, 10, 32, 33, 34, 18, 35, 36, 14, 2, 37, 38, 39, 21, 40, 41, 42, 5, 43, 32, 11, 24, 44, 41, 45, 7, 3, 31, 46, 9, 47, 48, 49, 15, 50, 18, 51, 27, 44, 52, 51, 5, 53, 10
Offset: 1

Views

Author

Antti Karttunen, Nov 29 2017

Keywords

Comments

For all i, j:
a(i) = a(j) => A092248(i) = A092248(j).
a(i) = a(j) => A295877(i) = A295877(j).

Crossrefs

Programs

  • PARI
    allocatemem(2^30);
    up_to = 65536;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A023900(n) = sumdivmult(n, d, d*moebius(d)); \\ This function from Charles R Greathouse IV, Sep 09 2014
    write_to_bfile(1,rgs_transform(vector(up_to,n,A023900(n))),"b295876.txt");
Showing 1-10 of 166 results. Next