cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A023900 Dirichlet inverse of Euler totient function (A000010).

Original entry on oeis.org

1, -1, -2, -1, -4, 2, -6, -1, -2, 4, -10, 2, -12, 6, 8, -1, -16, 2, -18, 4, 12, 10, -22, 2, -4, 12, -2, 6, -28, -8, -30, -1, 20, 16, 24, 2, -36, 18, 24, 4, -40, -12, -42, 10, 8, 22, -46, 2, -6, 4, 32, 12, -52, 2, 40, 6, 36, 28, -58, -8, -60, 30, 12, -1, 48, -20, -66, 16, 44, -24, -70, 2, -72, 36, 8, 18, 60, -24, -78, 4, -2
Offset: 1

Views

Author

Keywords

Comments

Also called reciprocity balance of n.
Apart from different signs, same as Sum_{d divides n} core(d)*mu(n/d), where core(d) (A007913) is the squarefree part of d. - Benoit Cloitre, Apr 06 2002
Main diagonal of A191898. - Mats Granvik, Jun 19 2011

Examples

			x - x^2 - 2*x^3 - x^4 - 4*x^5 + 2*x^6 - 6*x^7 - x^8 - 2*x^9 + 4*x^10 - ...
		

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 37.
  • D. M. Burton, Elementary Number Theory, Allyn and Bacon Inc. Boston, MA, 1976, p. 125.

Crossrefs

Moebius transform is A055615.
Cf. A027748, A173557 (gives the absolute values), A295876.
Cf. A253905 (Dgf at s=3).

Programs

  • Haskell
    a023900 1 = 1
    a023900 n = product $ map (1 -) $ a027748_row n
    -- Reinhard Zumkeller, Jun 01 2015
    
  • Maple
    A023900 := n -> mul(1-i,i=numtheory[factorset](n)); # Peter Luschny, Oct 26 2010
  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ d MoebiusMu @ d, { d, Divisors[n]}]] (* Michael Somos, Jul 18 2011 *)
    Array[ Function[ n, 1/Plus @@ Map[ #*MoebiusMu[ # ]/EulerPhi[ # ]&, Divisors[ n ] ] ], 90 ]
    nmax = 81; Drop[ CoefficientList[ Series[ Sum[ MoebiusMu[k] k x^k/(1 - x^k), {k, 1, nmax} ], {x, 0, nmax} ], x ], 1 ] (* Stuart Clary, Apr 15 2006 *)
    t[n_, 1] = 1; t[1, k_] = 1; t[n_, k_] :=  t[n, k] = If[n < k, If[n > 1 && k > 1, Sum[-t[k - i, n], {i, 1, n - 1}], 0], If[n > 1 && k > 1, Sum[-t[n - i, k], {i, 1, k - 1}], 0]]; Table[t[n, n], {n, 36}] (* Mats Granvik, Robert G. Wilson v, Jun 25 2011 *)
    Table[DivisorSum[m, # MoebiusMu[#] &], {m, 90}] (* Jan Mangaldan, Mar 15 2013 *)
    f[p_, e_] := (1 - p); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 14 2020 *)
  • PARI
    {a(n) = direuler( p=2, n, (1 - p*X) / (1 - X))[n]}
    
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, d * moebius(d)))} /* Michael Somos, Jul 18 2011 */
    
  • PARI
    a(n)=sumdivmult(n,d, d*moebius(d)) \\ Charles R Greathouse IV, Sep 09 2014
    
  • Python
    from sympy import divisors, mobius
    def a(n): return sum([d*mobius(d) for d in divisors(n)]) # Indranil Ghosh, Apr 29 2017
    
  • Python
    from math import prod
    from sympy import primefactors
    def A023900(n): return prod(1-p for p in primefactors(n)) # Chai Wah Wu, Sep 08 2023
    
  • Scheme
    ;; With memoization-macro definec.
    (definec (A023900 n) (if (= 1 n) 1 (* (- 1 (A020639 n)) (A023900 (A028234 n))))) ;; Antti Karttunen, Nov 28 2017

Formula

a(n) = Sum_{ d divides n } d*mu(d) = Product_{p|n} (1-p).
a(n) = 1 / (Sum_{ d divides n } mu(d)*d/phi(d)).
Dirichlet g.f.: zeta(s)/zeta(s-1). - Michael Somos, Jun 04 2000
a(n+1) = det(n+1)/det(n) where det(n) is the determinant of the n X n matrix M_(i, j) = i/gcd(i, j) = lcm(i, j)/j. - Benoit Cloitre, Aug 19 2003
a(n) = phi(n)*moebius(A007947(n))*A007947(n)/n. Logarithmic g.f.: Sum_{n >= 1} a(n)*x^n/n = log(F(x)) where F(x) is the g.f. of A117209 and satisfies: 1/(1-x) = Product_{n >= 1} F(x^n). - Paul D. Hanna, Mar 03 2006
G.f.: A(x) = Sum_{k >= 1} mu(k) k x^k/(1 - x^k) where mu(k) is the Moebius (Mobius) function, A008683. - Stuart Clary, Apr 15 2006
G.f.: A(x) is x times the logarithmic derivative of A117209(x). - Stuart Clary, Apr 15 2006
Row sums of triangle A134842. - Gary W. Adamson, Nov 12 2007
G.f.: x/(1-x) = Sum_{n >= 1} a(n)*x^n/(1-x^n)^2. - Paul D. Hanna, Aug 16 2008
a(n) = phi(rad(n)) *(-1)^omega(n) = A000010(A007947(n)) *(-1)^A001221(n). - Enrique Pérez Herrero, Aug 24 2010
a(n) = Product_{i = 2..n} (1-i)^( (pi(i)-pi(i-1)) * floor( (cos(n*Pi/i))^2 ) ), where pi = A000720, Pi = A000796. - Wesley Ivan Hurt, May 24 2013
a(n) = -limit of zeta(s)*(Sum_{d divides n} moebius(d)/exp(d)^(s-1)) as s->1 for n>1. - Mats Granvik, Jul 31 2013
a(n) = Sum_{d divides n} mu(d)*rad(d), where rad is A007947. - Enrique Pérez Herrero, May 29 2014
Conjecture for n>1: Let n = 2^(A007814(n))*m = 2^(ruler(n))*odd_part(n), where m = A000265(n), then a(n) = (-1)^(m=n)*(0+Sum_{i=1..m and gcd(i,m)=1} (4*min(i,m-i)-m)) = (-1)^(m1} (4*min(i,m-i)-m)). - I. V. Serov, May 02 2017
a(n) = (-1)^A001221(n) * A173557(n). - R. J. Mathar, Nov 02 2017
a(1) = 1; for n > 1, a(n) = (1-A020639(n)) * a(A028234(n)), because multiplicative with a(p^e) = (1-p). - Antti Karttunen, Nov 28 2017
a(n) = 1 - Sum_{d|n, d > 1} d*a(n/d). - Ilya Gutkovskiy, Apr 26 2019
From Richard L. Ollerton, May 07 2021: (Start)
For n>1, Sum_{k=1..n} a(gcd(n,k)) = 0.
For n>1, Sum_{k=1..n} a(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)) = 0. (End)
a(n) = rad(n)*(-1)^omega(n)*phi(n)/n = A062953(n)*A000010(n)/n. - Amrit Awasthi, Jan 30 2022
a(n) = mu(n)*phi(n) = A008683(n)*A000010(n) whenever n is squarefree. - Amrit Awasthi, Feb 03 2022
From Peter Bala, Jan 24 2024: (Start)
a(n) = Sum_{d divides n} core(d)*mu(d). Cf. Comment by Benoit Cloitre, dated Apr 06 2002.
a(n) = Sum_{d|n, e|n} n/gcd(d, e) * mu(n/d) * mu(n/e) (the sum is a multiplicative function of n by Tóth, and takes the value 1 - p for n = p^e, a prime power). (End)
From Peter Bala, Feb 01 2024: (Start)
G.f. Sum_{n >= 1} (2*n-1)*moebius(2*n-1)*x^(2*n-1)/(1 + x^(2n-1)).
a(n) = (-1)^(n+1) * Sum_{d divides n, d odd} d*moebius(d). (End)

A295886 Filter-sequence combining A003557(n) and A023900(n).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 21, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 34, 38, 39, 13, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 54, 71, 72, 73, 67, 74, 75, 76, 52, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 73
Offset: 1

Views

Author

Antti Karttunen, Dec 03 2017

Keywords

Comments

For all i, j: a(i) = a(j) => A295887(i) = A295887(j).

Crossrefs

Programs

  • PARI
    allocatemem(2^30);
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A003557(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2] = max(0,f[i, 2]-1)); factorback(f); };
    A023900(n) = sumdivmult(n, d, d*moebius(d)); \\ This function from Charles R Greathouse IV, Sep 09 2014
    v295876 = rgs_transform(vector(up_to,n,A023900(n)))
    A295876(n) = v295876[n];
    Anotsubmitted6(n) = (1/2)*(2 + ((A003557(n)+A295876(n))^2) - A003557(n) - 3*A295876(n));
    write_to_bfile(1,rgs_transform(vector(up_to,n,Anotsubmitted6(n))),"b295886.txt");

Formula

Restricted growth sequence transform of sequence a(n) = (1/2)*(2 + ((A003557(n) + A295876(n))^2) - A003557(n) - 3*A295876(n)).

A295877 Restricted growth sequence transform of A173557, Product_{p|n} (p-1).

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 1, 2, 3, 5, 2, 6, 4, 7, 1, 8, 2, 9, 3, 6, 5, 10, 2, 3, 6, 2, 4, 11, 7, 12, 1, 13, 8, 14, 2, 15, 9, 14, 3, 16, 6, 17, 5, 7, 10, 18, 2, 4, 3, 19, 6, 20, 2, 16, 4, 15, 11, 21, 7, 22, 12, 6, 1, 23, 13, 24, 8, 25, 14, 26, 2, 27, 15, 7, 9, 22, 14, 28, 3, 2, 16, 29, 6, 30, 17, 31, 5, 32, 7, 27, 10, 22, 18, 27, 2, 33, 4, 13, 3, 34, 19, 35, 6, 23
Offset: 1

Views

Author

Antti Karttunen, Nov 29 2017

Keywords

Crossrefs

Programs

  • PARI
    allocatemem(2^30);
    up_to = 65536;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A173557(n) = my(f=factor(n)[, 1]); prod(k=1, #f, f[k]-1); \\ This function from Michel Marcus, Oct 31 2017
    write_to_bfile(1,rgs_transform(vector(up_to,n,A173557(n))),"b295877.txt");

Formula

a(2n) = a(n).
Showing 1-3 of 3 results.