cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191906 The remainder of (product of proper divisors of n) mod (sum of proper divisors of n).

Original entry on oeis.org

0, 0, 2, 0, 0, 0, 1, 3, 2, 0, 0, 0, 4, 6, 4, 0, 9, 0, 4, 10, 8, 0, 0, 5, 10, 1, 0, 0, 36, 0, 1, 3, 14, 9, 41, 0, 16, 5, 0, 0, 0, 0, 16, 12, 20, 0, 44, 7, 6, 9, 36, 0, 54, 4, 0, 11, 26, 0, 0, 0, 28, 33, 8, 8, 66, 0, 42, 15, 10, 0, 81, 0, 34, 39, 16, 1, 72, 0, 10, 9, 38, 0, 84, 16, 40, 21
Offset: 2

Views

Author

Juri-Stepan Gerasimov, Jun 19 2011

Keywords

Examples

			a(2) = 1 mod 1 = 0;
a(3) = 1 mod 1 = 0;
a(4) = 2 mod 3 = 2.
		

Crossrefs

Programs

  • Maple
    A007956 := n -> mul(i, i=op(numtheory[divisors](n) minus {1, n}));
    A001065 := proc(n) numtheory[sigma](n)-n ; end proc:
    A191906 := proc(n) A007956(n) mod A001065(n) ; end proc:
    seq(A191906(n),n=2..90) ; # R. J. Mathar, Jun 25 2011
  • Mathematica
    Table[With[{pd=Most[Divisors[n]]},Mod[Times@@pd,Total[pd]]],{n,2,90}] (* Harvey P. Dale, Nov 24 2021 *)
  • PARI
    A191906(n) = { my(m=1,s=0); fordiv(n, d, if(dAntti Karttunen, Jul 11 2019

Formula

a(n) = A007956(n) mod A001065(n).