A191906 The remainder of (product of proper divisors of n) mod (sum of proper divisors of n).
0, 0, 2, 0, 0, 0, 1, 3, 2, 0, 0, 0, 4, 6, 4, 0, 9, 0, 4, 10, 8, 0, 0, 5, 10, 1, 0, 0, 36, 0, 1, 3, 14, 9, 41, 0, 16, 5, 0, 0, 0, 0, 16, 12, 20, 0, 44, 7, 6, 9, 36, 0, 54, 4, 0, 11, 26, 0, 0, 0, 28, 33, 8, 8, 66, 0, 42, 15, 10, 0, 81, 0, 34, 39, 16, 1, 72, 0, 10, 9, 38, 0, 84, 16, 40, 21
Offset: 2
Examples
a(2) = 1 mod 1 = 0; a(3) = 1 mod 1 = 0; a(4) = 2 mod 3 = 2.
Links
- Antti Karttunen, Table of n, a(n) for n = 2..16384
- Antti Karttunen, Data supplement: n, a(n) computed for n = 2..65537
Programs
-
Maple
A007956 := n -> mul(i, i=op(numtheory[divisors](n) minus {1, n})); A001065 := proc(n) numtheory[sigma](n)-n ; end proc: A191906 := proc(n) A007956(n) mod A001065(n) ; end proc: seq(A191906(n),n=2..90) ; # R. J. Mathar, Jun 25 2011
-
Mathematica
Table[With[{pd=Most[Divisors[n]]},Mod[Times@@pd,Total[pd]]],{n,2,90}] (* Harvey P. Dale, Nov 24 2021 *)
-
PARI
A191906(n) = { my(m=1,s=0); fordiv(n, d, if(d
Antti Karttunen, Jul 11 2019