cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191935 Triangle read by rows of Legendre-Stirling numbers of the second kind.

Original entry on oeis.org

1, 1, 2, 1, 8, 4, 1, 20, 52, 8, 1, 40, 292, 320, 16, 1, 70, 1092, 3824, 1936, 32, 1, 112, 3192, 25664, 47824, 11648, 64, 1, 168, 7896, 121424, 561104, 585536, 69952, 128, 1, 240, 17304, 453056, 4203824, 11807616, 7096384, 419840, 256, 1, 330, 34584, 1422080, 23232176, 137922336, 243248704, 85576448, 2519296, 512
Offset: 1

Views

Author

N. J. A. Sloane, Jun 19 2011

Keywords

Examples

			Triangle begins:
  1;
  1   2;
  1   8    4;
  1  20   52      8;
  1  40  292    320     16;
  1  70 1092   3824   1936     32;
  1 112 3192  25664  47824  11648    64;
  1 168 7896 121424 561104 585536 69952 128;
  ...
		

Crossrefs

Cf. A135921 (row sums), A191936.
Mirror of triangle A071951. - Omar E. Pol, Jan 10 2012

Programs

  • Mathematica
    Ps[n_, k_]:= Sum[(-1)^(j+k)*(2*j+1)*j^n*(1+j)^n/((j+k+1)!*(k-j)!), {j,0,k}];
    Table[Ps[n, n-k+1], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Jun 06 2021 *)
  • PARI
    T071951(n, k) = sum(i=0, k, (-1)^(i+k) * (2*i + 1) * (i*i + i)^n / (k-i)! / (k+i+1)! );
    for (n=1, 10, for (k=1, n, print1(T071951(n,n-k+1), ", ")); print); \\ Michel Marcus, Nov 24 2019
    
  • Sage
    def Ps(n,k): return sum( (-1)^(j+k)*(2*j+1)*j^n*(1+j)^n/(factorial(j+k+1) * factorial(k-j)) for j in (0..k) )
    flatten([[Ps(n,n-k+1) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Jun 06 2021

Formula

From G. C. Greubel, Jun 06 2021: (Start)
T(n, k) = Ps(n, n-k+1), where Ps(n, k) = Sum_{j=0..k} (-1)^(j+k)*(2*j+1)*j^n*(1 + j)^n/((j+k+1)!*(k-j)!).
Sum_{k=1..n} T(n, k) = A135921(n). (End)

Extensions

More terms from Omar E. Pol, Jan 10 2012
More terms from Michel Marcus, Nov 24 2019