A191967 n * (numbers that are not divisible by 3).
0, 1, 4, 12, 20, 35, 48, 70, 88, 117, 140, 176, 204, 247, 280, 330, 368, 425, 468, 532, 580, 651, 704, 782, 840, 925, 988, 1080, 1148, 1247, 1320, 1426, 1504, 1617, 1700, 1820, 1908, 2035, 2128, 2262, 2360, 2501, 2604, 2752, 2860, 3015, 3128, 3290, 3408
Offset: 0
Links
- Eric Weisstein's World of Mathematics, Pentagonal Number.
- Wikipedia, Pentagonal number.
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Programs
-
Haskell
a191967 n = n * a001651 n
-
Magma
A001651:=func
; [n*A001651(n): n in [0..48]]; // Bruno Berselli, Jul 09 2012 -
Mathematica
Table[n (6 n - 3 - (-1)^n)/4, {n, 0, 48}] (* Bruno Berselli, Jul 09 2012 *)
-
PARI
a(n)=n\2*3*n+if(n%2,n,-n) \\ Charles R Greathouse IV, Oct 07 2015
Formula
a(n) = n * A001651(n).
G.f.: x*(1+3*x+6*x^2+2*x^3)/((1+x)^2*(1-x)^3). - Bruno Berselli, Jul 09 2012
a(n) = A182079(3n). - Bruno Berselli, Jul 09 2012
From Amiram Eldar, Feb 18 2022: (Start)
Sum_{n>=1} 1/a(n) = Pi/(4*sqrt(3)) + 9*log(3)/4 - 2*log(2).
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(3)*Pi/4 + 3*log(3)/4 - 2*log(2). (End)
Comments