A192010 The smallest number with n digits in its prime factorization (total count of digits of all bases and exponents).
1, 4, 12, 36, 132, 396, 1716, 5148, 25740, 87516, 437580, 1662804, 8314020, 38244492, 167943204, 839716020, 3862693692, 17298150012, 86490750060, 397857450276, 1850902051284, 9254510256420, 42570747179532, 201748323589956, 1008741617949780, 4640211442568988
Offset: 1
Examples
a(2) = 4 = 2^2 and A050252(12) = (1+1) = 2; a(3) = 12 = 2^2 * 3 and A050252(12) = (1+1) + 1 = 3; a(4) = 36 = 2^2 * 3^2 and A050252(36) = (1+1) + (1+1) = 4; a(5) = 132 = 2^2 * 3 * 11 and A050252(132) = (1+1) + 1 + 2 = 5; a(6) = 396 = 2^2 * 3^2 * 11 and A050252(396) = (1+1) + (1+1) + 2 = 6; a(7) = 1716 = 2^2 * 3 * 11 * 13 and A050252(1716) = (1+1) + 1 + 2 + 2 = 7; a(8) = 5148 = 2^2 * 3^2 * 11 * 13 and A050252(5148) = (1+1) + (1+1) + 2 + 2 = 8; a(9) = 25740 = 2^2 * 3^2 * 5 * 11 * 13 and A050252(25740) = (1+1) + (1+1) + 1 + 2 + 2 = 9; a(10) = 87516 = 2^2 * 3^2 * 11 * 13 * 17 and A050252(87516) = (1+1) + (1+1) + 2 + 2 + 2 = 10; a(11) = 437580 = 2^2 * 3^2 * 5 * 11 * 13 * 17 and A050252(437580) = (1+1) + (1+1) + 1 + 2 + 2 + 2 = 11; a(12) = 1662804 = 2^2 * 3^2 * 11 * 13 * 17 * 19 and A050252(1662804) = (1+1) + (1+1) + 2 + 2 + 2 + 2 = 12; a(13) = 8314020 = 2^2 * 3^2 * 5 * 11 * 13 * 17 * 19 and A050252(8314020) = (1+1) + (1+1) + 1 + 2 + 2 + 2 + 2 = 13.
Programs
-
Haskell
import Data.List (elemIndex) import Data.Maybe (fromJust) a192010 n = succ $ fromJust $ elemIndex n $ map a050252 [1..]
Extensions
a(14)-a(26) from Donovan Johnson, Jul 03 2011
Comments