cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192019 The Wiener index of the binary Fibonacci tree of order n.

Original entry on oeis.org

1, 10, 50, 214, 802, 2802, 9275, 29580, 91668, 277924, 828092, 2433140, 7067885, 20337318, 58054534, 164602410, 463990190, 1301338150, 3633753815, 10107239160, 28016346216, 77419909800, 213349801560, 586471432104, 1608485221177, 4402406713762
Offset: 2

Views

Author

Emeric Deutsch, Jun 21 2011

Keywords

Comments

The binary Fibonacci trees f(k) of order k are rooted binary trees defined as follows: 1. f(0) has no nodes and f(1) consists of a single node. 2. For k>=2, f(k) is constructed from a root with f(k-1) as its left subtree and f(k-2) as its right subtree. See the Iyer & Reddy references.

Examples

			a(3)=10 because the binary Fibonacci tree of order 3 is basically the path graph A - B - R - C and we have 3 distances equal to 1 (AB, BR, RC), 2 distances equal to 2 (AR and BC) and 1 distance equal to 3 (AC); 3*1 + 2*2 + 1*3 = 10.
		

References

  • K. Viswanathan Iyer and K. R. Udaya Kumar Reddy, Wiener index of Binomial trees and Fibonacci trees, Int'l. J. Math. Engin. with Comp., Accepted for publication, Sept. 2009.

Crossrefs

Cf. A192018.

Programs

  • Maple
    G := z/((1-z)*(1-t*z-t*z^2)): Gser := simplify(series(G, z = 0, 30)): for n to 27 do r[n] := sort(coeff(Gser, z, n)) end do: w[1] := 0: w[2] := t: for n from 3 to 27 do w[n] := sort(expand(w[n-1]+w[n-2]+t*r[n-1]+t*r[n-2]+t^2*r[n-1]*r[n-2])) end do: seq(subs(t = 1, diff(w[n], t)), n = 2 .. 27);

Formula

a(n) = Sum_{k>=1} k*A192018(n,k).
The Wiener index of a connected graph is the derivative of the Wiener polynomial W(t) of the graph, evaluated at t=1. The Wiener polynomial w(n,t) of the binary Fibonacci tree of order n satisfies the recurrence relation w(n,t) = w(n-1,t) + w(n-2,t) + t*r(n-1,t) + t*r(n-2) + t^2*r(n-1,t)*r(n-2,t), w(1,t)=0, w(2,t)=t, where r(n,t) is the generating polynomial of the nodes of the binary Fibonacci tree f(n) with respect to the level of the nodes (for example, r(2,t) = 1 + t for the tree / ; see A004070 and the Maple program).
Empirical G.f.: x^2*(x^4-3*x^2+4*x+1)/((x+1)^2*(x^2-3*x+1)^2*(x^2+x-1)^2). [Colin Barker, Nov 17 2012]