cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192090 Number of tatami tilings of a 4 X n grid (with monomers allowed).

Original entry on oeis.org

1, 5, 29, 44, 66, 126, 238, 490, 922, 1714, 3306, 6246, 12102, 22994, 43682, 83810, 159154, 305062, 581382, 1108362, 2119602, 4037338, 7716554, 14720142, 28084702, 53639778, 102298794, 195341594, 372753634, 711338798, 1357975774
Offset: 0

Views

Author

Frank Ruskey and Yuji Yamauchi (eugene.uti(AT)gmail.com), Jun 23 2011

Keywords

Comments

A tatami tiling consists of dimers (1 X 2) and monomers (1 X 1) where no four meet at a point.

Examples

			Here are some tatami tilings of the 4 X 3 grid:
    _ _ _ _   _ _ _ _   _ _ _ _   _ _ _ _
   |_ _| |_| |_| |_ _| | |_ _| | |_| |_ _|
   |_ _|_| | | |_|_ _| |_| |_|_| | |_|_ _|
   |_|_ _|_| |_|_ _|_| |_|_|_ _| |_|_ _|_|
		

Crossrefs

Cf. A180970, (3 X n grid), A192091 (5 X n grid), row sums of A272473.

Formula

G.f.: -13 + 3*x + 3*x^2 + 2*x^3 + (14 - 12*x + 10*x^2 + 10*x^4 - 104*x^5 + 114*x^6 - 80*x^7 + 34*x^8 + 12*x^9 - 2*x^10)/(1 - x - x^2 - x^3 + x^4 - 7*x^5 + 7*x^6 - x^7 + x^8 + x^9 + x^10 - x^11).