A192107 Sum of all the n-digit numbers whose digits are all odd.
25, 1375, 69375, 3471875, 173609375, 8680546875, 434027734375, 21701388671875, 1085069443359375, 54253472216796875, 2712673611083984375, 135633680555419921875, 6781684027777099609375, 339084201388885498046875, 16954210069444427490234375
Offset: 1
Examples
a(1) = 1 + 3 + 5 + 7 + 9 = 25. a(2) = 11 + 13 + ... + 19 + 31 + ... + 79 + 91 + ... + 99 = 1375.
References
- Finnish High School Mathematics Contest, Final Round, 1997, problem 4. [Crux Mathematicorum, v22 n3, Apr. 2002, p. 143]
Links
- The IMO compendium, Problem 4, Finnish High School Mathematics Contest 1997.
- Index entries for linear recurrences with constant coefficients, signature (55,-250).
- Index to sequences related to Olympiads.
Programs
-
Maple
A:=seq((10^n-1)*5^(n+1)/9,n=1..20);
-
Mathematica
Table[((10^n - 1)*5^(n + 1))/9, {n, 20}] (* T. D. Noe, Dec 31 2012 *) LinearRecurrence[{55,-250},{25,1375},20] (* Harvey P. Dale, Oct 11 2018 *)
-
PARI
a(n) = (10^n-1) * 5^(n+1)/9 \\ Charles R Greathouse IV, Jul 06 2017
Formula
a(n) = ((10^n-1) * 5^(n+1))/9 = 5^(n+1) * R_n with R_n is the repunit with n times the digit 1.
From Colin Barker, Jan 04 2013: (Start)
a(n) = 55*a(n-1) - 250*a(n-2).
G.f.: 25*x/((5*x-1)*(50*x-1)). (End)
Comments