cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192135 Prime powers p^e with p < e.

Original entry on oeis.org

8, 16, 32, 64, 81, 128, 243, 256, 512, 729, 1024, 2048, 2187, 4096, 6561, 8192, 15625, 16384, 19683, 32768, 59049, 65536, 78125, 131072, 177147, 262144, 390625, 524288, 531441, 1048576, 1594323, 1953125, 2097152, 4194304, 4782969, 5764801, 8388608, 9765625, 14348907
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 26 2011

Keywords

Crossrefs

Complement to A074583 with respect to A000961.

Programs

  • Maple
    A192135 := proc(nmax) local s ,i,p,e ; s := {} ; for i from 1 do p := ithprime(i) ; if p^(p+1) > nmax then break; end if; for e from p+1 do if p^e > nmax then break; end if; s := s union {p^e} ; end do: end do: sort(s) ; end proc:
    A192135(20000000) ; # R. J. Mathar, Jul 09 2011
  • Mathematica
    seq[lim_] := Module[{s = {}, p = 2}, While[p^p <= lim, AppendTo[s, p^Range[p+1, Log[p, lim]]]; p = NextPrime[p]]; Sort[Flatten[s]]]; seq[10^7] (* Amiram Eldar, Apr 14 2025 *)

Formula

a(n) = A000961(A192187(n)).
A095874(a(n)) = A192187(n).
Sum_{n>=1} 1/a(n) = Sum_{p prime} 1/(p^p*(p-1)) = 0.26859872089648243789... . - Amiram Eldar, Apr 14 2025