A192135 Prime powers p^e with p < e.
8, 16, 32, 64, 81, 128, 243, 256, 512, 729, 1024, 2048, 2187, 4096, 6561, 8192, 15625, 16384, 19683, 32768, 59049, 65536, 78125, 131072, 177147, 262144, 390625, 524288, 531441, 1048576, 1594323, 1953125, 2097152, 4194304, 4782969, 5764801, 8388608, 9765625, 14348907
Offset: 1
Keywords
Links
- Donovan Johnson, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A192135 := proc(nmax) local s ,i,p,e ; s := {} ; for i from 1 do p := ithprime(i) ; if p^(p+1) > nmax then break; end if; for e from p+1 do if p^e > nmax then break; end if; s := s union {p^e} ; end do: end do: sort(s) ; end proc: A192135(20000000) ; # R. J. Mathar, Jul 09 2011
-
Mathematica
seq[lim_] := Module[{s = {}, p = 2}, While[p^p <= lim, AppendTo[s, p^Range[p+1, Log[p, lim]]]; p = NextPrime[p]]; Sort[Flatten[s]]]; seq[10^7] (* Amiram Eldar, Apr 14 2025 *)
Formula
Sum_{n>=1} 1/a(n) = Sum_{p prime} 1/(p^p*(p-1)) = 0.26859872089648243789... . - Amiram Eldar, Apr 14 2025