cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A192210 a(n) = sum of unsigned coefficients in (1+x+x^2-x^3)^n.

Original entry on oeis.org

1, 4, 10, 26, 80, 194, 504, 1442, 3710, 9536, 26842, 69014, 178704, 496602, 1316204, 3377206, 9242898, 24629944, 63304540, 172497622, 462822414, 1210912388, 3177522724, 8736822276, 22617998204, 59776061150, 163702751968, 433787373560
Offset: 0

Views

Author

Paul D. Hanna, Jun 25 2011

Keywords

Comments

What is the behavior of this sequence? Does there exist a g.f.?
It would be nice to know the (more accurate) values of the following limits:
(1) The position of the first negative coefficient in (1+x+x^2-x^3)^n, divided by n, seems to reach a limit near 0.398...
(2) Limit a(n)^(1/n) seems to exist near 2.6637...
(3) Limit a(n+1)/a(n) does not seem to be unique; attractors seem to exist near 2.66...

Examples

			Illustrate the coefficients in (1+x+x^2-x^3)^n by:
n=0: [1];
n=1: [1, 1, 1, -1];
n=2: [1, 2, 3, 0, -1, -2, 1];
n=3: [1, 3, 6, 4, 0, -6, -2, 0, 3, -1];
n=4: [1, 4, 10, 12, 7, -8, -12, -8, 7, 4, 2, -4, 1];
n=5: [1, 5, 15, 25, 25, 1, -25, -35, -5, 15, 21, -5, -5, -5, 5, -1];
n=6: [1, 6, 21, 44, 60, 36, -24, -84, -66, 0, 66, 36, -4, -36, 0, 4, 9, -6, 1];
n=7: [1, 7, 28, 70, 119, 119, 28, -132, -210, -126, 84, 168, 98, -70, -76, -28, 49, 7, 0, -14, 7, -1]; ...
This sequence gives the sums of the absolute values of the coefficients for n>=0.
		

Crossrefs

Programs

  • Mathematica
    Table[Total[Abs[CoefficientList[Expand[(1+x+x^2-x^3)^n],x]]],{n,0,30}] (* Harvey P. Dale, Oct 12 2012 *)
  • PARI
    {a(n)=sum(k=0,3*n,abs(polcoeff((1+x+x^2-x^3)^n,k)))}

A227964 Triangle where the g.f. of row n equals (1-x-x^2+x^3)^n and terms T(n,k) are read by rows n>=0, k=0..3*n.

Original entry on oeis.org

1, 1, -1, -1, 1, 1, -2, -1, 4, -1, -2, 1, 1, -3, 0, 8, -6, -6, 8, 0, -3, 1, 1, -4, 2, 12, -17, -8, 28, -8, -17, 12, 2, -4, 1, 1, -5, 5, 15, -35, -1, 65, -45, -45, 65, -1, -35, 15, 5, -5, 1, 1, -6, 9, 16, -60, 24, 116, -144, -66, 220, -66, -144, 116, 24, -60, 16, 9, -6, 1, 1, -7, 14, 14, -91, 77, 168, -344, -14, 546, -364, -364, 546, -14, -344, 168, 77, -91, 14, 14, -7, 1
Offset: 0

Views

Author

Paul D. Hanna, Aug 01 2013

Keywords

Examples

			Triangle begins:
1;
1, -1, -1, 1;
1, -2, -1, 4, -1, -2, 1;
1, -3, 0, 8, -6, -6, 8, 0, -3, 1;
1, -4, 2, 12, -17, -8, 28, -8, -17, 12, 2, -4, 1;
1, -5, 5, 15, -35, -1, 65, -45, -45, 65, -1, -35, 15, 5, -5, 1;
1, -6, 9, 16, -60, 24, 116, -144, -66, 220, -66, -144, 116, 24, -60, 16, 9, -6, 1;
1, -7, 14, 14, -91, 77, 168, -344, -14, 546, -364, -364, 546, -14, -344, 168, 77, -91, 14, 14, -7, 1; ...
		

Crossrefs

Cf. A192205.

Programs

  • PARI
    {T(n,k)=polcoeff((1-x-x^2+x^3 +x*O(x^k))^n,k)}
    for(n=0,10,for(k=0,3*n,print1(T(n,k),", "));print(""))

Formula

Sum_{k=0..3*n} |T(n,k)| = A192205(n).
Sum_{k=0..3*n} T(n,k)^2 = binomial(4*n,n).
Sum_{k=0..3*n} T(n,k) * binomial(3*n,k) = (-1)^n * binomial(4*n,n).
Sum_{k=0..3*n} T(n,k) * binomial(2*n+k,k) = 2^n.
Sum_{k=0..3*n} T(n,k) * binomial(3*n+k,k) = A008288(3*n,n), where A008288 is the Delannoy array (see A026001).
Showing 1-2 of 2 results.