A192210 a(n) = sum of unsigned coefficients in (1+x+x^2-x^3)^n.
1, 4, 10, 26, 80, 194, 504, 1442, 3710, 9536, 26842, 69014, 178704, 496602, 1316204, 3377206, 9242898, 24629944, 63304540, 172497622, 462822414, 1210912388, 3177522724, 8736822276, 22617998204, 59776061150, 163702751968, 433787373560
Offset: 0
Keywords
Examples
Illustrate the coefficients in (1+x+x^2-x^3)^n by: n=0: [1]; n=1: [1, 1, 1, -1]; n=2: [1, 2, 3, 0, -1, -2, 1]; n=3: [1, 3, 6, 4, 0, -6, -2, 0, 3, -1]; n=4: [1, 4, 10, 12, 7, -8, -12, -8, 7, 4, 2, -4, 1]; n=5: [1, 5, 15, 25, 25, 1, -25, -35, -5, 15, 21, -5, -5, -5, 5, -1]; n=6: [1, 6, 21, 44, 60, 36, -24, -84, -66, 0, 66, 36, -4, -36, 0, 4, 9, -6, 1]; n=7: [1, 7, 28, 70, 119, 119, 28, -132, -210, -126, 84, 168, 98, -70, -76, -28, 49, 7, 0, -14, 7, -1]; ... This sequence gives the sums of the absolute values of the coefficients for n>=0.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
Crossrefs
Programs
-
Mathematica
Table[Total[Abs[CoefficientList[Expand[(1+x+x^2-x^3)^n],x]]],{n,0,30}] (* Harvey P. Dale, Oct 12 2012 *)
-
PARI
{a(n)=sum(k=0,3*n,abs(polcoeff((1+x+x^2-x^3)^n,k)))}
Comments