A192208 Number of n-step prudent self-avoiding walks on hexagonal [= triangular] lattice.
1, 6, 30, 138, 606, 2610, 11070, 46386, 192606, 793938, 3253038, 13261746, 53832462, 217707762, 877594086, 3527521794, 14142930774, 56574143754, 225841103190, 899866007610, 3579435531846, 14215941861138, 56378805654510, 223297285830858, 883326046736814
Offset: 0
Examples
Two 5-step self-avoiding walks on hexagonal lattice from (S) to (E), the walk at left is prudent while the walk at right is not prudent: . o---o...o...o...o---o . . \ . \ . . . . . \ . \ . o..(S)..o...o...o..(E)..o . . . . / . . . . . . . / . (E)--o...o...o..(S)--o
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..61
- Mireille Bousquet-Mélou, Families of prudent self-avoiding walks, arXiv:0804.4843. J. Combin. Theory Ser. A 117 no. 3 (2010) 313-344.
- Enrica Duchi, On some classes of prudent walks, in: FPSAC'05, Taormina, Italy, 2005.
- Wikipedia, Self-avoiding walk
Programs
-
Maple
i:= n-> max(n, 0)+1: d:= n-> max(n-1, -1): b:= proc(n, x, y, z, u, v, w) option remember; `if`(n=0, 1, `if`(x>y, b(n, y, x, w, v, u, z), b(n-1, d(x), d(y), z, i(u), i(v), w)+ `if`(min(y, z)<=0 or x=-1, b(n-1, d(y), d(z), u, i(v), i(w), x), 0)+ `if`(min(z, u)<=0 or y=-1, b(n-1, d(z), d(u), v, i(w), i(x), y), 0)+ `if`(min(v, w)<=0 or x=-1, b(n-1, d(v), d(w), x, i(y), i(z), u), 0)+ `if`(min(w, x)<=0 or y=-1, b(n-1, d(w), d(x), y, i(z), i(u), v), 0))) end: a:= n-> `if`(n=0, 1, 6*b(n-1, -1$2, 0, 1$2, 0)): seq(a(n), n=0..20);
-
Mathematica
i[n_]:= Max[n, 0]+1; d[n_]:= Max[n-1, -1]; b[n_, x_, y_, z_, u_, v_, w_] := b[n, x, y, z, u, v, w] = If[n==0, 1, If[x>y, b[n, y, x, w, v, u, z], b[n-1, d[x], d[y], z, i[u], i[v], w]+ If[Min[y, z]<=0 || x==-1, b[n-1, d[y], d[z], u, i[v], i[w], x], 0]+ If[Min[z, u]<=0 || y==-1, b[n-1, d[z], d[u], v, i[w], i[x], y], 0]+ If[Min[v, w]<=0 || x==-1, b[n-1, d[v], d[w], x, i[y], i[z], u], 0]+ If[Min[w, x]<=0 || y==-1, b[n-1, d[w], d[x], y, i[z], i[u], v], 0]]]; a[n_]:= If[n==0, 1, 6*b[n-1, -1,-1, 0, 1,1, 0]]; Table[a[n],{n,0,20}] (* Jean-François Alcover, Aug 10 2017, translated from Maple *)
Comments