A192234 a(n) = 2*(a(n-1) + a(n-2) + a(n-3)) - a(n-4) for n >= 4, with initial terms 0,1,0,1.
0, 1, 0, 1, 4, 9, 28, 81, 232, 673, 1944, 5617, 16236, 46921, 135604, 391905, 1132624, 3273345, 9460144, 27340321, 79014996, 228357577, 659965644, 1907336113, 5512303672, 15930853281, 46041020488, 133061018769, 384553481404, 1111380188041
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- H. S. M. Coxeter, Loxodromic sequences of tangent spheres, Aequationes Mathematicae, 1.1-2 (1968): 104-121. See p. 112.
- Index entries for linear recurrences with constant coefficients, signature (2,2,2,-1).
Crossrefs
Cf. A192232.
Programs
-
GAP
a:=[0,1,0,1];; for n in [5..40] do a[n]:=2*a[n-1]+2*a[n-2]+2*a[n-3] -a[n-4]; od; a; # G. C. Greubel, Jul 29 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( x*(1-2*x-x^2)/(1-2*x-2*x^2-2*x^3+x^4) )); // G. C. Greubel, Jul 29 2019 -
Mathematica
q[x_]:= x + 1; reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)}; t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, ChebyshevT[n, x]]]], {n, 1, 40}]; Table[Coefficient[Part[t, n], x, 0], {n, 1, 40}] (* A192234 *) Table[Coefficient[Part[t, n], x, 1], {n, 1, 40}] (* A071101 *) (* Peter J. C. Moses, Jun 25 2011 *)
-
PARI
a(n)=my(t=polchebyshev(n));while(poldegree(t)>1, t=substpol(t, x^2,x+1));subst(t,x,0) \\ Charles R Greathouse IV, Feb 09 2012
-
PARI
concat(0, Vec(x*(1-2*x-x^2)/(1-2*x-2*x^2-2*x^3+x^4) + O(x^40))) \\ Colin Barker, Sep 09 2018
-
Sage
(x*(1-2*x-x^2)/(1-2*x-2*x^2-2*x^3+x^4)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jul 29 2019
Formula
G.f.: x*(1 - 2*x - x^2) / (1 - 2*x - 2*x^2 - 2*x^3 + x^4). - Colin Barker, Feb 09 2012 and Sep 09 2018
Extensions
Entry revised (with new offset and initial terms) by N. J. A. Sloane, Sep 03 2018
Comments