cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A192232 Constant term of the reduction of n-th Fibonacci polynomial by x^2 -> x+1. (See Comments.)

Original entry on oeis.org

1, 0, 2, 1, 6, 7, 22, 36, 89, 168, 377, 756, 1630, 3353, 7110, 14783, 31130, 65016, 136513, 285648, 599041, 1254456, 2629418, 5508097, 11542854, 24183271, 50674318, 106173180, 222470009, 466131960, 976694489, 2046447180, 4287928678, 8984443769, 18825088134
Offset: 1

Views

Author

Clark Kimberling, Jun 26 2011

Keywords

Comments

Polynomial reduction: an introduction
...
We begin with an example. Suppose that p(x) is a polynomial, so that p(x)=(x^2)t(x)+r(x) for some polynomials t(x) and r(x), where r(x) has degree 0 or 1. Replace x^2 by x+1 to get (x+1)t(x)+r(x), which is (x^2)u(x)+v(x) for some u(x) and v(x), where v(x) has degree 0 or 1. Continuing in this manner results in a fixed polynomial w(x) of degree 0 or 1. If p(x)=x^n, then w(x)=x*F(n)+F(n-1), where F=A000045, the sequence of Fibonacci numbers.
In order to generalize, write d(g) for the degree of an arbitrary polynomial g(x), and suppose that p, q, s are polynomials satisfying d(s)s in this manner until reaching w such that d(w)s.
The coefficients of (reduction of p by q->s) comprise a vector of length d(q)-1, so that a sequence p(n,x) of polynomials begets a sequence of vectors, such as (F(n), F(n-1)) in the above example. We are interested in the component sequences (e.g., F(n-1) and F(n)) for various choices of p(n,x).
Following are examples of reduction by x^2->x+1:
n-th Fibonacci p(x) -> A192232+x*A112576
n-th cyclotomic p(x) -> A192233+x*A051258
n-th 1st-kind Chebyshev p(x) -> A192234+x*A071101
n-th 2nd-kind Chebyshev p(x) -> A192235+x*A192236
x(x+1)(x+2)...(x+n-1) -> A192238+x*A192239
(x+1)^n -> A001519+x*A001906
(x^2+x+1)^n -> A154626+x*A087635
(x+2)^n -> A020876+x*A030191
(x+3)^n -> A192240+x*A099453
...
Suppose that b=(b(0), b(1),...) is a sequence, and let p(n,x)=b(0)+b(1)x+b(2)x^2+...+b(n)x^n. We define (reduction of sequence b by q->s) to be the vector given by (reduction of p(n,x) by q->s), with components in the order of powers, from 0 up to d(q)-1. For k=0,1,...,d(q)-1, we then have the "k-sequence of (reduction of sequence b by q->s)". Continuing the example, if b is the sequence given by b(k)=1 if k=n and b(k)=0 otherwise, then the 0-sequence of (reduction of b by x^2->x+1) is (F(n-1)), and the 1-sequence is (F(n)).
...
For selected sequences b, here are the 0-sequences and 1-sequences of (reduction of b by x^2->x+1):
b=A000045, Fibonacci sequence (1,1,2,3,5,8,...) yields
0-sequence A166536 and 1-sequence A064831.
b=(1,A000045)=(1,1,1,2,3,5,8,...) yields
0-sequence A166516 and 1-sequence A001654.
b=A000027, natural number sequence (1,2,3,4,...) yields
0-sequence A190062 and 1-sequence A122491.
b=A000032, Lucas sequence (1,3,4,7,11,...) yields
0-sequence A192243 and 1-sequence A192068.
b=A000217, triangular sequence (1,3,6,10,...) yields
0-sequence A192244 and 1-sequence A192245.
b=A000290, squares sequence (1,4,9,16,...) yields
0-sequence A192254 and 1-sequence A192255.
More examples: A192245-A192257.
...
More comments:
(1) If s(n,x)=(reduction of x^n by q->s) and
p(x)=p(0)x^n+p(1)x^(n-1)+...+p(n)x^0, then
(reduction of p by q->s)=p(0)s(n,x)+p(1)s(n-1,x)
+...+p(n-1)s(1,x)+p(n)s(0,x). See A192744.
(2) For any polynomial p(x), let P(x)=(reduction of p(x)
by q->s). Then P(r)=p(r) for each zero r of
q(x)-s(x). In particular, if q(x)=x^2 and s(x)=x+1,
then P(r)=p(r) if r=(1+sqrt(5))/2 (golden ratio) or
r=(1-sqrt(5))/2.

Examples

			The first four Fibonacci polynomials and their reductions by x^2->x+1 are shown here:
F1(x)=1 -> 1 + 0x
F2(x)=x -> 0 + 1x
F3(x)=x^2+1 -> 2+1x
F4(x)=x^3+2x -> 1+4x
F5(x)=x^4+3x^2+1 -> (x+1)^2+3(x+1)+1 -> 6+6x.
From these, read A192232=(1,0,1,1,6,...) and A112576=(0,1,1,4,6,...).
		

Crossrefs

Programs

  • Mathematica
    q[x_] := x + 1;
    reductionRules = {x^y_?EvenQ -> q[x]^(y/2),  x^y_?OddQ -> x q[x]^((y - 1)/2)};
    t = Table[FixedPoint[Expand[#1 /. reductionRules] &, Fibonacci[n, x]], {n, 1, 40}];
    Table[Coefficient[Part[t, n], x, 0], {n, 1, 40}]
      (* A192232 *)
    Table[Coefficient[Part[t, n], x, 1], {n, 1, 40}]
    (* A112576 *)
    (* Peter J. C. Moses, Jun 25 2011 *)
    LinearRecurrence[{1, 3, -1, -1}, {1, 0, 2, 1}, 60] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2012 *)
  • PARI
    Vec((1-x-x^2)/(1-x-3*x^2+x^3+x^4)+O(x^99)) \\ Charles R Greathouse IV, Jan 08 2013

Formula

Empirical G.f.: -x*(x^2+x-1)/(x^4+x^3-3*x^2-x+1). - Colin Barker, Sep 11 2012
The above formula is correct. - Charles R Greathouse IV, Jan 08 2013
a(n) = A265752(A206296(n)). - Antti Karttunen, Dec 15 2015
a(n) = A112576(n) -A112576(n-1) -A112576(n-2). - R. J. Mathar, Dec 16 2015

Extensions

Example corrected by Clark Kimberling, Dec 18 2017

A318605 Decimal expansion of geometric progression constant for Coxeter's Loxodromic Sequence of Tangent Circles.

Original entry on oeis.org

2, 8, 9, 0, 0, 5, 3, 6, 3, 8, 2, 6, 3, 9, 6, 3, 8, 1, 2, 4, 5, 7, 0, 0, 9, 2, 9, 6, 1, 0, 3, 1, 2, 9, 6, 0, 9, 4, 3, 5, 9, 1, 7, 2, 2, 1, 6, 4, 5, 8, 5, 9, 1, 1, 0, 7, 5, 2, 0, 8, 9, 0, 0, 5, 2, 4, 4, 5, 5, 8, 0, 3, 8, 3, 5, 4, 9, 7, 0, 4, 6, 1, 5, 3, 7, 5, 9, 1, 4, 1, 9, 1, 7, 7, 8, 5, 1, 3, 9, 6, 0, 2, 3, 2, 6, 8
Offset: 1

Views

Author

A.H.M. Smeets, Sep 07 2018

Keywords

Comments

This constant and its reciprocal are the real solutions of x^4 - 2*x^3 - 2*x^2 - 2*x + 1 = (x^2 - (sqrt(5)+1)*x + 1)*(x^2 + (sqrt(5)-1)*x + 1) = 0.
This constant and its reciprocal are the solutions of x^2 - (1+sqrt(5))*x + 1 = 0.
Decimal expansion of the largest x satisfying x^2 - (1+sqrt(5))*x + 1 = 0.
For sequences of type aa(n) = 2*(aa(n-1) + aa(n-2) + aa(n-3)) - aa(n-4) for arbitrary initial terms (except the trivial all zero), i.e., linear recurrence relations of order 4 with signature (2,2,2,-1), lim_{n -> infinity} aa(n)/aa(n-1) = this constant; see for instance A192234, A192237, A317973, A317974, A317975, A317976.

Examples

			2.8900536382639638124570092961031296094359...
		

Crossrefs

Programs

  • Maple
    evalf[180]((1+sqrt(5))/2+sqrt((1+sqrt(5))/2)); # Muniru A Asiru, Nov 21 2018
  • Mathematica
    RealDigits[GoldenRatio + Sqrt[GoldenRatio], 10 , 120][[1]] (* Amiram Eldar, Nov 22 2018 *)
  • PARI
    ((1+sqrt(5))/2 + sqrt((1+sqrt(5))/2)) \\ Michel Marcus, Nov 21 2018

Formula

Equals A001622 + A139339, i.e., phi + sqrt(phi) where phi is the golden ratio.

A192237 a(n) = 2*(a(n-1) + a(n-2) + a(n-3)) - a(n-4) for n >= 4, with initial terms 0,0,0,1.

Original entry on oeis.org

0, 0, 0, 1, 2, 6, 18, 51, 148, 428, 1236, 3573, 10326, 29842, 86246, 249255, 720360, 2081880, 6016744, 17388713, 50254314, 145237662, 419744634, 1213084507, 3505879292, 10132179204, 29282541372, 84628115229, 244579792318, 706848718634, 2042830710990, 5903890328655, 17062559724240, 49311712809136, 142513495013072
Offset: 0

Views

Author

Clark Kimberling, Jun 26 2011

Keywords

Crossrefs

With a different offset, equals (A192236)/2.
Other sequences with this recurrence but different initial conditions: A192234, A317973, A317974, A317975, A317976.

Programs

  • GAP
    a:=[0,0,0,1];; for n in [5..40] do a[n]:=2*a[n-1]+2*a[n-2]+2*a[n-3] -a[n-4]; od; a; # G. C. Greubel, Jul 30 2019
  • Magma
    I:=[0,0,0,1]; [n le 4 select I[n] else 2*(Self(n-1)+Self(n-2) +Self(n-3))-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Sep 06 2018
    
  • Mathematica
    q[x_]:= x + 1;
    reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)};
    t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, ChebyshevU[n, x]]]], {n, 1, 40}];
    Table[Coefficient[Part[t, n], x, 0], {n, 1, 40}] (* A192235 *)
    Table[Coefficient[Part[t, n], x, 1], {n, 1, 40}] (* A192236 *)
    Table[Coefficient[Part[t, n]/2, x, 1], {n, 1, 40}] (* A192237 *)
    (* by Peter J. C. Moses, Jun 25 2011 *)
    LinearRecurrence[{2,2,2,-1}, {0,0,0,1}, 40] (* Vincenzo Librandi, Sep 06 2018 *)
  • PARI
    concat(vector(3), Vec(x^3/(1-2*x-2*x^2-2*x^3+x^4) + O(x^40))) \\ Colin Barker, Sep 06 2018
    
  • Sage
    (x^3/(1-2*x-2*x^2-2*x^3+x^4)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jul 30 2019
    

Formula

G.f.: x^3 / (1 - 2*x - 2*x^2 - 2*x^3 + x^4). - Colin Barker, Sep 12 2012 and Sep 06 2018

Extensions

Entry revised (with new offset and initial terms) by N. J. A. Sloane, Sep 03 2018

A317976 a(n) = 2*(a(n-1)+a(n-2)+a(n-3))-a(n-4) for n >= 4, with initial terms 0,0,1,0.

Original entry on oeis.org

0, 0, 1, 0, 2, 6, 15, 46, 132, 380, 1101, 3180, 9190, 26562, 76763, 221850, 641160, 1852984, 5355225, 15476888, 44729034, 129269310, 373595239, 1079710278, 3120420620, 9018182964, 26063032485, 75323561860, 217689133998, 629133273722, 1818228906675, 5254779066930, 15186593360656, 43890069394800, 126844654738097
Offset: 0

Views

Author

N. J. A. Sloane, Sep 03 2018

Keywords

Crossrefs

Other sequences with this recurrence but different initial conditions: A192234, A192237, A317973, A317974, A317975.

Programs

  • Mathematica
    (See A192235.)
  • PARI
    concat(vector(2), Vec(x^2*(1 - 2*x) / (1 - 2*x - 2*x^2 - 2*x^3 + x^4) + O(x^40))) \\ Colin Barker, Sep 09 2018

Formula

G.f.: x^2*(1 - 2*x) / (1 - 2*x - 2*x^2 - 2*x^3 + x^4). - Colin Barker, Sep 09 2018
Showing 1-4 of 4 results.