cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A318605 Decimal expansion of geometric progression constant for Coxeter's Loxodromic Sequence of Tangent Circles.

Original entry on oeis.org

2, 8, 9, 0, 0, 5, 3, 6, 3, 8, 2, 6, 3, 9, 6, 3, 8, 1, 2, 4, 5, 7, 0, 0, 9, 2, 9, 6, 1, 0, 3, 1, 2, 9, 6, 0, 9, 4, 3, 5, 9, 1, 7, 2, 2, 1, 6, 4, 5, 8, 5, 9, 1, 1, 0, 7, 5, 2, 0, 8, 9, 0, 0, 5, 2, 4, 4, 5, 5, 8, 0, 3, 8, 3, 5, 4, 9, 7, 0, 4, 6, 1, 5, 3, 7, 5, 9, 1, 4, 1, 9, 1, 7, 7, 8, 5, 1, 3, 9, 6, 0, 2, 3, 2, 6, 8
Offset: 1

Views

Author

A.H.M. Smeets, Sep 07 2018

Keywords

Comments

This constant and its reciprocal are the real solutions of x^4 - 2*x^3 - 2*x^2 - 2*x + 1 = (x^2 - (sqrt(5)+1)*x + 1)*(x^2 + (sqrt(5)-1)*x + 1) = 0.
This constant and its reciprocal are the solutions of x^2 - (1+sqrt(5))*x + 1 = 0.
Decimal expansion of the largest x satisfying x^2 - (1+sqrt(5))*x + 1 = 0.
For sequences of type aa(n) = 2*(aa(n-1) + aa(n-2) + aa(n-3)) - aa(n-4) for arbitrary initial terms (except the trivial all zero), i.e., linear recurrence relations of order 4 with signature (2,2,2,-1), lim_{n -> infinity} aa(n)/aa(n-1) = this constant; see for instance A192234, A192237, A317973, A317974, A317975, A317976.

Examples

			2.8900536382639638124570092961031296094359...
		

Crossrefs

Programs

  • Maple
    evalf[180]((1+sqrt(5))/2+sqrt((1+sqrt(5))/2)); # Muniru A Asiru, Nov 21 2018
  • Mathematica
    RealDigits[GoldenRatio + Sqrt[GoldenRatio], 10 , 120][[1]] (* Amiram Eldar, Nov 22 2018 *)
  • PARI
    ((1+sqrt(5))/2 + sqrt((1+sqrt(5))/2)) \\ Michel Marcus, Nov 21 2018

Formula

Equals A001622 + A139339, i.e., phi + sqrt(phi) where phi is the golden ratio.

A192235 Constant term of the reduction of the n-th 2nd-kind Chebyshev polynomial by x^2 -> x+1.

Original entry on oeis.org

0, 3, 8, 21, 64, 183, 528, 1529, 4416, 12763, 36888, 106605, 308096, 890415, 2573344, 7437105, 21493632, 62117747, 179523624, 518832901, 1499454912, 4333505127, 12524062256, 36195211689, 104606103232, 302317249227, 873713066040
Offset: 1

Views

Author

Clark Kimberling, Jun 26 2011

Keywords

Comments

See A192232.

Crossrefs

Programs

  • GAP
    a:=[0,3,8,21];; for n in [5..40] do a[n]:=2*a[n-1]+2*a[n-2]+ 2*a[n-3]-a[n-4]; od; a; # G. C. Greubel, Jul 30 2019
  • Magma
    I:=[0, 3, 8, 21]; [n le 4 select I[n] else 2*Self(n-1) +2*Self(n-2) +2*Self(n-3) -Self(n-4): n in [1..40]]; // G. C. Greubel, Jul 30 2019
    
  • Mathematica
    q[x_]:= x + 1;
    reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)};
    t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, ChebyshevU[n, x]]]], {n, 1, 40}];
    Table[Coefficient[Part[t, n], x, 0], {n, 1, 40}] (* A192235 *)
    Table[Coefficient[Part[t, n], x, 1], {n, 1, 40}] (* A192236 *)
    Table[Coefficient[Part[t, n]/2, x, 1], {n, 1, 40}] (* A192237 *)
    (* by Peter J. C. Moses, Jun 25 2011 *)
    LinearRecurrence[{2,2,2,-1}, {0,3,8,21}, 40] (* G. C. Greubel, Jul 30 2019 *)
  • PARI
    a(n)=my(t=polchebyshev(n,2));while(poldegree(t)>1, t=substpol(t, x^2,x+1));subst(t,x,0) \\ Charles R Greathouse IV, Feb 09 2012
    
  • PARI
    m=40; v=concat([0, 3, 8, 21], vector(m-4)); for(n=5, m, v[n] = 2*v[n-1]+2*v[n-2]+2*v[n-3]-v[n-4]); v \\ G. C. Greubel, Jul 30 2019
    
  • Sage
    @cached_function
    def a(n):
        if (n==0): return 0
        elif (1 <= n <= 3): return fibonacci(2*n+2)
        else: return 2*(a(n-1) + a(n-2) + a(n-3)) - a(n-4)
    [a(n) for n in (0..40)] # G. C. Greubel, Jul 30 2019
    

Formula

Empirical G.f.: x^2*(3-x)*(1+x)/(1-2*x-2*x^2-2*x^3+x^4). - Colin Barker, Sep 11 2012

A192236 Coefficient of x in the reduction of the n-th 2nd-kind Chebyshev polynomial by x^2 -> x+1.

Original entry on oeis.org

2, 4, 12, 36, 102, 296, 856, 2472, 7146, 20652, 59684, 172492, 498510, 1440720, 4163760, 12033488, 34777426, 100508628, 290475324, 839489268, 2426169014, 7011758584, 20264358408, 58565082744, 169256230458, 489159584636, 1413697437268
Offset: 1

Views

Author

Clark Kimberling, Jun 26 2011

Keywords

Comments

See A192232.

Crossrefs

Programs

  • GAP
    a:=[2,4,12,36];; for n in [5..40] do a[n]:=2*a[n-1]+2*a[n-2]+ 2*a[n-3]-a[n-4]; od; a; # G. C. Greubel, Jul 30 2019
  • Magma
    I:=[2,4,12,36]; [n le 4 select I[n] else 2*Self(n-1) +2*Self(n-2) +2*Self(n-3) -Self(n-4): n in [1..40]]; // G. C. Greubel, Jul 30 2019
    
  • Mathematica
    q[x_]:= x + 1; m:=40;
    reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)};
    t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, ChebyshevU[n, x]]]], {n, m}];
    Table[Coefficient[Part[t, n], x, 0], {n, m}] (* A192235 *)
    Table[Coefficient[Part[t, n], x, 1], {n, m}] (* A192236 *)
    Table[Coefficient[Part[t, n]/2, x, 1], {n, m}] (* A192237 *)
    (* Peter J. C. Moses, Jun 25 2011 *)
    LinearRecurrence[{2,2,2,-1}, {2,4,12,36}, 40] (* G. C. Greubel, Jul 30 2019 *)
  • PARI
    m=40; v=concat([2,4,12,36], vector(m-4)); for(n=5, m, v[n] = 2*v[n-1]+2*v[n-2]+2*v[n-3]-v[n-4]); v \\ G. C. Greubel, Jul 30 2019
    
  • Sage
    def a(n):
        if (n==0): return 2
        elif (1 <= n <= 3): return 4*3^(n-1)
        else: return 2*(a(n-1) + a(n-2) + a(n-3)) - a(n-4)
    [a(n) for n in (0..40)] # G. C. Greubel, Jul 30 2019
    

Formula

a(n) = 2*A192237(n+2).
G.f.: 2*x/(1-2*x-2*x^2-2*x^3+x^4). - Colin Barker, Sep 12 2012

A317976 a(n) = 2*(a(n-1)+a(n-2)+a(n-3))-a(n-4) for n >= 4, with initial terms 0,0,1,0.

Original entry on oeis.org

0, 0, 1, 0, 2, 6, 15, 46, 132, 380, 1101, 3180, 9190, 26562, 76763, 221850, 641160, 1852984, 5355225, 15476888, 44729034, 129269310, 373595239, 1079710278, 3120420620, 9018182964, 26063032485, 75323561860, 217689133998, 629133273722, 1818228906675, 5254779066930, 15186593360656, 43890069394800, 126844654738097
Offset: 0

Views

Author

N. J. A. Sloane, Sep 03 2018

Keywords

Crossrefs

Other sequences with this recurrence but different initial conditions: A192234, A192237, A317973, A317974, A317975.

Programs

  • Mathematica
    (See A192235.)
  • PARI
    concat(vector(2), Vec(x^2*(1 - 2*x) / (1 - 2*x - 2*x^2 - 2*x^3 + x^4) + O(x^40))) \\ Colin Barker, Sep 09 2018

Formula

G.f.: x^2*(1 - 2*x) / (1 - 2*x - 2*x^2 - 2*x^3 + x^4). - Colin Barker, Sep 09 2018
Showing 1-4 of 4 results.