cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192243 0-sequence of reduction of Lucas sequence by x^2 -> x+1.

Original entry on oeis.org

1, 1, 5, 12, 34, 88, 233, 609, 1597, 4180, 10946, 28656, 75025, 196417, 514229, 1346268, 3524578, 9227464, 24157817, 63245985, 165580141, 433494436, 1134903170, 2971215072, 7778742049, 20365011073, 53316291173, 139583862444, 365435296162
Offset: 1

Views

Author

Clark Kimberling, Jun 26 2011

Keywords

Comments

See A192232 for definition of "k-sequence of reduction of [sequence] by [substitution]".
Number of rooted ordered trees with n non-root nodes such that successive branch heights are weakly decreasing; examples are given in the Arndt link. - Joerg Arndt, Aug 27 2014

Examples

			The Lucas sequence provides coefficients for the power series 1+3x+4x^2+7x^3+..., whose partial sums are polynomials to which we apply reduction by x^2 -> x+1 as introduced at A192232:
1 -> 1
1+3x -> 1+3x
1+3x+4x^2 -> 1+3x+4(x+1)= 5+7x
1+3x+4x^2+7x^2 -> 12+21x..., so that
0-sequence=(1,1,5,12,...), 1-sequence=(0,3,7,21,...).
		

Crossrefs

Programs

  • Magma
    I:=[1, 1, 5, 12]; [n le 4 select I[n] else 3*Self(n-1) - 3*Self(n-3) + Self(n-4): n in [1..30]]; // G. C. Greubel, Dec 21 2017
  • Mathematica
    c[n_] := LucasL[n]; Table[c[n], {n, 1, 15}]; q[x_] := x + 1; p[0, x_] :=
    1; p[n_, x_] := p[n - 1, x] + (x^n)*c[n + 1]; reductionRules = {x^y_?EvenQ
    -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)}; t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0, 50}]
    u = Table[Coefficient[Part[t, n], x, 0], {n, 1, 50}] (* A192243 *)
    Table[Coefficient[Part[t, n], x, 1], {n, 1, 50}] (* A192068 *)
    (* Peter J. C. Moses, Jun 26 2011 *)
    Table[SeriesCoefficient[x*(1 - 2*x + 2*x^2)/(1 - 3*x + 3*x^3 - x^4), {x, 0, n}], {n, 1, 50}]
    LinearRecurrence[{3,0,-3,1}, {1,1,5,12}, 30] (* G. C. Greubel, Dec 21 2017 *)
    Table[If[EvenQ[n],Fibonacci[2*n-1]-1, Fibonacci[2*n-1]], {n,1,20}] (* Rigoberto Florez, Aug 29 2019 *)
  • PARI
    x='x+O('x^30); Vec(x*(1-2*x+2*x^2)/(1-3*x+3*x^3-x^4)) \\ G. C. Greubel, Dec 21 2017
    

Formula

From Colin Barker, Feb 08 2012: (Start)
G.f.: x*(1-2*x+2*x^2)/(1-3*x+3*x^3-x^4).
a(n) = 3*a(n-1) - 3*a(n-3) + a(n-4).
(End)
a(n) = (-1)*(2^(-1-n)*(5*((-2)^n+2^n) + (-5+sqrt(5))*(3+sqrt(5))^n - (3-sqrt(5))^n*(5 + sqrt(5)))) / 5. - Colin Barker, Dec 22 2017
a(n) = F(2n-1)-1 if n is even and F(2n-1) if n is odd, where F(n) is the n-th Fibonacci number. - Rigoberto Florez, Aug 29 2019
E.g.f.: - cosh(x) + (1/5)*(cosh(3*x/2) + sinh(3*x/2))*(5*cosh(sqrt(5)*x/2) - sqrt(5)*sinh(sqrt(5)*x/2)). - Stefano Spezia, Aug 30 2019