A192270 Pseudo anti-perfect numbers.
5, 7, 8, 10, 17, 22, 23, 31, 32, 33, 35, 38, 39, 41, 45, 49, 52, 53, 56, 59, 60, 63, 67, 68, 70, 71, 72, 73, 74, 76, 77, 81, 82, 83, 85, 88, 94, 95, 98, 101, 102, 103, 104, 105, 108, 109, 110, 112, 115, 116, 117, 122, 123, 127, 129, 130, 137, 138, 143, 144, 147, 148, 149, 150, 151, 154, 157, 158, 162, 164, 165, 167, 171, 172, 175, 176, 178, 179, 182, 185
Offset: 1
Keywords
Examples
39 is pseudo anti-perfect because its anti-divisors are 2, 6, 7, 11, 26 and the subset of 2, 11, and 26 adds up to 39.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..1000
Programs
-
Maple
with(combinat); P:=proc(i) local a,k,n,S; for n from 1 to i do a:={}; for k from 2 to n-1 do if abs((n mod k)- k/2) < 1 then a:=a union {k}; fi; od; S:=subsets(a); while not S[finished] do if convert(S[nextvalue](), `+`)=n then print(n); break; fi; od; od; end: P(10000);
Comments