cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A192271 Anti-weird numbers.

Original entry on oeis.org

11, 12, 13, 14, 15, 18, 20, 21, 25, 27, 28, 30, 37, 40, 42, 43, 46, 47, 48, 50, 55, 57, 58, 62, 65, 66, 75, 78, 80, 84, 86, 87, 90, 91, 92, 93, 97, 99, 100, 107, 111, 113, 118, 119, 120, 121, 124, 125, 126, 128, 132, 133, 135, 136, 140, 142, 145, 152, 153, 155, 160, 161, 163, 168, 170, 173, 177, 180, 181, 183, 184, 186, 188, 190, 192, 196, 197, 198, 204, 205, 208, 210, 212, 213, 218, 222, 223
Offset: 1

Views

Author

Paolo P. Lava, Jun 28 2011

Keywords

Comments

Like A006037 but using anti-divisors: Anti-weird numbers are anti-abundant (A192268) but not pseudo anti-perfect (A192270).

Examples

			25 is an anti-weird number because it is anti-abundant (its anti-divisors are 2, 3, 7, 10, 17 and their sum is 39 > 25) and no subsets of its anti-divisors add up to 25.
		

Crossrefs

Programs

  • Maple
    # see A066272
    isA192270 := proc(n) local a,S ; a := antidivisors(n) ;  S := combinat[subsets](a) ; while not S[finished] do if convert(S[nextvalue](),`+`) = n then return true; end if; end do; false ; end proc:
    isA192268 := proc(n) A066417(n) > n ; end proc:
    isA192271 := proc(n) isA192268(n) and not isA192270(n) ; end proc:
    for n from 1 to 40 do if isA192271(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Jul 04 2011

A192285 Primitive pseudo anti-perfect numbers.

Original entry on oeis.org

5, 7, 8, 17, 22, 23, 31, 33, 38, 39, 41, 52, 53, 59, 67, 71, 73, 74, 81, 83, 94, 101, 103, 108, 109, 116, 122, 127, 129, 137, 143, 149, 151, 157, 158, 167, 171, 172, 178, 179, 193, 199, 214, 237, 241, 247, 257, 262, 263, 269, 283, 293, 311, 313, 319, 331, 333
Offset: 1

Views

Author

Paolo P. Lava, Jul 20 2011

Keywords

Comments

A primitive pseudo anti-perfect number is a pseudo anti-perfect number that is not a multiple of any other pseudo anti-perfect number.
Like A006036 but using anti-divisors.
Subset of A192270.

Crossrefs

Programs

  • Maple
    with(combinat);
    P:=proc(i)
    local a,j,k,n,ok,S,v;
    v:=array(1..10000); j:=0;
    for n from 1 to i do
      a:={};
      for k from 2 to n-1 do
        if abs((n mod k)- k/2) < 1 then a:=a union {k}; fi;
      od;
      S:=subsets(a);
      while not S[finished] do
        if convert(S[nextvalue](), `+`)=n then
           if j=0 then j:=1; v[1]:=n; print(n); break;
           else
              ok:=1;
              for k from 1 to j do
                  if trunc(n/v[k])=n/v[k] then ok:=0; break; fi;
              od;
              j:=j+1; v[j]:=n; if ok=1 then print(n); fi;
           fi;
        fi;
      od;
    od;
    end:

A240968 Unitary anti-perfect numbers.

Original entry on oeis.org

5, 8, 10, 41, 206, 1066, 2412, 3281, 8086, 11570, 29525, 57012, 73728, 410390, 413486, 775130, 2391485, 2454146, 2937446, 64563520, 100531166, 152032126, 988747406
Offset: 1

Views

Author

Paolo P. Lava, Aug 05 2014

Keywords

Comments

For any number x we consider the sum of its anti-divisors which are coprime to x (unitary anti-divisors). The sequence list the numbers for which this sum is equal to x.
Subset of A192270.
I found only 2 unitary anti-amicable numbers: 18208, 20470.
No other terms < 2147000000. Jud McCranie, Sep 21 2019.

Examples

			Anti-divisors of 1066 are 3, 4, 9, 27, 52, 79, 164, 237, 711. The anti-divisors which are coprime to 1066 are 3, 9, 27, 79, 237, 711 and their sum is 3 + 9 + 27 + 79 + 237 + 711 = 1066.
		

Crossrefs

Programs

  • Maple
    P:=proc(q) local a,k,n;
    for n from 3 to q do a:=0; b:=0;
    for k from 2 to n-1 do if abs((n mod k)-k/2)<1 then
      if gcd(n,k)=1 then a:=a+k; fi; fi; od;
    if n=a then print(n); fi; od; end: P(10^6);

Extensions

a(14)-a(23) by Jud McCranie, Sep 21 2019.
Showing 1-3 of 3 results.