cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192323 Expansion of theta_3(q^3) * theta_3(q^5) in powers of q.

Original entry on oeis.org

1, 0, 0, 2, 0, 2, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 4, 0, 0, 2, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 4, 6, 0, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 2, 0, 0, 0, 0, 6, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Aug 01 2011

Keywords

Examples

			G.f. = 1 + 2*q^3 + 2*q^5 + 4*q^8 + 2*q^12 + 4*q^17 + 2*q^20 + 4*q^23 + 2*q^27 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q^3] EllipticTheta[ 3, 0, q^5], {q, 0, n}];
  • PARI
    {a(n) = if( n<1, n==0, qfrep([3, 0; 0, 5], n)[n]*2)};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^6 + A) * eta(x^10 + A))^5 / (eta(x^3 + A) * eta(x^5 + A) * eta(x^12 + A) * eta(x^20 + A))^2, n))};

Formula

Expansion of (eta(q^6) * eta(q^10))^5 / (eta(q^3) * eta(q^5) * eta(q^12) * eta(q^20))^2 in powers of q.
Euler transform of a period 60 sequence.
G.f.: (Sum_{k} x^(3 * k^2)) * (Sum_{k} x^(5 * k^2)).
a(3*n + 1) = a(4*n + 2) = a(5*n + 1) = a(5*n + 4) = 0. a(4*n) = A028956(n).
a(n) = A122855(n) - A140727(n). a(5*n) = A260671(n).