cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A260671 Expansion of theta_3(q) * theta_3(q^15) in powers of q.

Original entry on oeis.org

1, 2, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 6, 0, 0, 4, 0, 0, 0, 0, 4, 2, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 10, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 4, 0, 0, 4, 0, 2, 0, 0, 0, 4, 0
Offset: 0

Views

Author

Michael Somos, Nov 14 2015

Keywords

Comments

a(n) is the number of solutions in integers (x, y) of x^2 + 15*y^2 = n. - Michael Somos, Jul 17 2018

Examples

			G.f. = 1 + 2*x + 2*x^4 + 2*x^9 + 2*x^15 + 6*x^16 + 4*x^19 + 4*x^24 + 2*x^25 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^15], {q, 0, n}];
  • PARI
    {a(n) = if( n<1, n==0, qfrep([1, 0; 0, 15], n)[n]*2)};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^30 + A))^5 / (eta(x + A) * eta(x^4 + A) * eta(x^15 + A) * eta(x^60 + A))^2, n))};
    
  • PARI
    q='q+O('q^99); Vec((eta(q^2)*eta(q^30))^5/(eta(q)*eta(q^4)*eta(q^15)*eta(q^60))^2) \\ Altug Alkan, Jul 18 2018

Formula

Expansion of (eta(q^2) * eta(q^30))^5 / (eta(q) * eta(q^4) * eta(q^15) * eta(q^60))^2 in powers of q.
Euler transform of a period 60 sequence.
G.f. is a period 1 Fourier series which satisfies f(-1 / (60 t)) = 60^(1/2) (t/i) f(t) where q = exp(2 Pi i t).
G.f.: (Sum_{k in Z} x^(k^2)) * (Sum_{k in Z} x^(15*k^2)).
a(3*n + 2) = a(4*n + 2) = a(5*n + 2) = a(5*n + 3) = 0.
a(4*n) = A028625(n). a(4*n + 1) = 2 * A260675(n). a(4*n + 3) = 2 * A260676(n).
a(5*n) = A192323(n).
a(n) = A122855(n) + A140727(n).

A028956 Theta series of quadratic form (or lattice) with Gram matrix [ 4, 1; 1, 4 ].

Original entry on oeis.org

1, 0, 4, 2, 0, 2, 0, 0, 8, 0, 0, 0, 6, 0, 0, 0, 0, 4, 4, 0, 6, 0, 0, 4, 0, 0, 0, 2, 0, 0, 4, 0, 12, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 2, 0, 4, 10, 0, 4, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 12, 0, 0, 0, 8, 0, 0, 2, 0, 0, 0, 0, 10, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 12, 4, 0, 4, 0, 0, 4, 0, 0, 0, 8
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
The number of integer solutions (x, y) to 2*x^2 + x*y + 2*y^2 = n, discriminant -15. - Ray Chandler, Jul 12 2014

Examples

			G.f. =  1 + 4*q^4 + 2*q^6 + 2*q^10 + 8*q^16 + 6*q^24 + 4*q^34 + 4*q^36 + 6*q^40 + 4*q^46 + 2*q^54 + 4*q^60 + 12*q^64 + 8*q^76 + 2*q^90 + 4*q^94 + 10*q^96 + 4*q^100 + ...
G.f. = 1 + 4*x^2  + 2*x^3 + 2*x^5  + 8*x^8 + 6*x^12 + 4*x^17 + ... - _Michael Somos_, Jan 23 2023
		

References

  • R. Barman and N. D. Baruah, Theta function identities associated with Ramanujan's modular equations of degree 15, Proc. Indian Acad. Sci. Math. Sci. 120 (2010), no. 3, 267-284. see p. 271, equ. (3.1)

Crossrefs

Cf. A192323.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q^3] EllipticTheta[ 3, 0, q^5], {q, 0, 4 n}]; (* Michael Somos, Aug 01 2011 *)
  • PARI
    {a(n) = if( n<1, n==0, qfrep([4, 1;1, 4], n, 1)[n]*2)}; /* Michael Somos, Aug 26 2006 */
    
  • PARI
    {a(n) = if( n<1, n==0, sumdiv( n, d, kronecker( -15, d) - kronecker( -3, d) * kronecker( 5, n/d)))}; /* Michael Somos, Aug 26 2006 */

Formula

Expansion of phi(q^3) * phi(q^5) + 4 * q^2 * psi(q^6) * psi(q^10) in powers of q where phi(),psi() are Ramanujan theta functions. - Michael Somos, Feb 09 2006
Expansion of (phi(q^3) * phi(q^5) + phi(-q^3) * phi(-q^5)) / 2 in powers of q^4 where phi() is a Ramanujan theta function. - Michael Somos, Aug 01 2011
Expansion of (eta(q^3) * eta(q^5))^2 / (eta(q) * eta(q^15)) - (eta(q) * eta(q^15))^2 / (eta(q^3) * eta(q^5)) in powers of q. - Michael Somos, Aug 26 2006
G.f.: theta_3(q^3) * theta_3(q^5) + theta_2(q^3) * theta_2(q^5) . - Michael Somos, Feb 09 2006
a(n) = A192323(4*n).

A281640 Expansion of x * f(x, x) * f(x^5, x^25) in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, 2, 0, 0, 2, 1, 2, 0, 0, 4, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 3, 2, 0, 0, 2, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 1, 6, 0, 0, 2, 0, 0, 0, 0, 4, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 2, 0, 0, 2, 2, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 1, 4, 0, 0, 2, 0, 2
Offset: 1

Views

Author

Michael Somos, Jan 25 2017

Keywords

Examples

			G.f. = x + 2*x^2 + 2*x^5 + x^6 + 2*x^7 + 4*x^10 + 2*x^15 + 2*x^17 + 2*x^22 + ...
G.f. = q^5 + 2*q^8 + 2*q^17 + q^20 + 2*q^23 + 4*q^32 + 2*q^47 + 2*q^53 + 2*q^65 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, DivisorSum[ 3 n + 2, KroneckerSymbol[ -15, #] (-1)^Boole[Mod[#, 4] == 2] &]];
    a[ n_] := SeriesCoefficient[ x EllipticTheta[ 3, 0, x] QPochhammer[ -x^5, x^30] QPochhammer[ -x^25, x^30] QPochhammer[ x^30], {x, 0, n}];
  • PARI
    {a(n) = if( n<1, 0, sumdiv(3*n + 2, d, kronecker(-15, d) * (-1)^(d%4==2) ))};
    
  • PARI
    {a(n) = if( n<1, 0, my(m = 3*n + 2, s, x); for(y=1, sqrtint(m\5), if( y%3 && issquare((m - 5*y^2)\3, &x), s += (x>0) + 1)); s)};
    
  • PARI
    {a(n) = if( n<1, 0, my(A); n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^10 + A)^2 * eta(x^15 + A) * eta(x^60 + A) / (eta(x + A)^2 * eta(x^4 + A)^2 * eta(x^5 + A) * eta(x^20 + A) * eta(x^30 + A)), n))};

Formula

G.f.: x * (Sum_{k in Z} x^k^2) * (Sum_{k in Z} x^(15*k^2 - 10*k)).
G.f.: x * Product_{k>0} (1 + x^(2*k-1))^2 * (1 - x^(2*k)) * (1 + x^(30*k-25)) * (1 + x^(30*k-5)) * (1 - x^(30*k)).
a(n) = A122855(3*n + 2) = A260649(3*n + 2) = A122856(6*n + 4) = A258276(6*n + 4).
a(n) = - A140727(3*n + 2). 2 * a(n) = A192323(3*n + 2).

A317642 Expansion of theta_3(q^2)*theta_3(q^5), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 0, 2, 0, 0, 2, 0, 4, 2, 0, 0, 0, 0, 4, 0, 0, 0, 0, 2, 0, 2, 0, 4, 4, 0, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0, 2, 0, 4, 0, 0, 2, 0, 4, 4, 0, 4, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 4, 0, 2, 0, 0, 0, 0, 8, 0, 0, 2, 0, 4, 0, 0, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 4, 0, 0, 6
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 02 2018

Keywords

Comments

Number of integer solutions to the equation 2*x^2 + 5*y^2 = n.

Examples

			G.f. = 1 + 2*q^2 + 2*q^5 + 4*q^7 + 2*q^8 + 4*q^13 + 2*q^18 + 2*q^20 + 4*q^22 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 98; CoefficientList[Series[EllipticTheta[3, 0, q^2] EllipticTheta[3, 0, q^5], {q, 0, nmax}], q]
    nmax = 98; CoefficientList[Series[QPochhammer[-q^2, -q^2] QPochhammer[-q^5, -q^5]/(QPochhammer[q^2, -q^2] QPochhammer[q^5, -q^5]), {q, 0, nmax}], q]

Formula

G.f.: Product_{k>=1} (1 + x^(4*k-2))^2*(1 - x^(4*k))*(1 + x^(10*k-5))^2*(1 - x^(10*k)).

A317643 Expansion of theta_3(q^3)*theta_3(q^4), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 0, 0, 2, 2, 0, 0, 4, 0, 0, 0, 0, 2, 0, 0, 0, 6, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 4, 0, 0, 0, 0, 2, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 6, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 6, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 4, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 02 2018

Keywords

Comments

Number of integer solutions to the equation 3*x^2 + 4*y^2 = n.

Examples

			G.f. = 1 + 2*q^3 + 2*q^4 + 4*q^7 + 2*q^12 + 6*q^16 + 4*q^19 + 2*q^27 + 4*q^28 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[EllipticTheta[3, 0, q^3] EllipticTheta[3, 0, q^4], {q, 0, nmax}], q]
    nmax = 100; CoefficientList[Series[QPochhammer[-q^3, -q^3] QPochhammer[-q^4, -q^4]/(QPochhammer[q^3, -q^3] QPochhammer[q^4, -q^4]), {q, 0, nmax}], q]

Formula

G.f.: Product_{k>=1} (1 + x^(6*k-3))^2*(1 - x^(6*k))*(1 + x^(8*k-4))^2*(1 - x^(8*k)).
Showing 1-5 of 5 results.