cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A192323 Expansion of theta_3(q^3) * theta_3(q^5) in powers of q.

Original entry on oeis.org

1, 0, 0, 2, 0, 2, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 4, 0, 0, 2, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 4, 6, 0, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 2, 0, 0, 0, 0, 6, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Aug 01 2011

Keywords

Examples

			G.f. = 1 + 2*q^3 + 2*q^5 + 4*q^8 + 2*q^12 + 4*q^17 + 2*q^20 + 4*q^23 + 2*q^27 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q^3] EllipticTheta[ 3, 0, q^5], {q, 0, n}];
  • PARI
    {a(n) = if( n<1, n==0, qfrep([3, 0; 0, 5], n)[n]*2)};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^6 + A) * eta(x^10 + A))^5 / (eta(x^3 + A) * eta(x^5 + A) * eta(x^12 + A) * eta(x^20 + A))^2, n))};

Formula

Expansion of (eta(q^6) * eta(q^10))^5 / (eta(q^3) * eta(q^5) * eta(q^12) * eta(q^20))^2 in powers of q.
Euler transform of a period 60 sequence.
G.f.: (Sum_{k} x^(3 * k^2)) * (Sum_{k} x^(5 * k^2)).
a(3*n + 1) = a(4*n + 2) = a(5*n + 1) = a(5*n + 4) = 0. a(4*n) = A028956(n).
a(n) = A122855(n) - A140727(n). a(5*n) = A260671(n).

A028625 Expansion of (theta_3(z)*theta_3(15z)+theta_2(z)*theta_2(15z)).

Original entry on oeis.org

1, 2, 0, 0, 6, 0, 4, 0, 0, 2, 4, 0, 0, 0, 0, 2, 10, 0, 0, 4, 0, 0, 0, 0, 8, 2, 0, 0, 0, 0, 0, 4, 0, 0, 8, 0, 6, 0, 0, 0, 8, 0, 0, 0, 0, 0, 8, 0, 0, 2, 0, 4, 0, 0, 4, 0, 0, 0, 0, 0, 6, 4, 0, 0, 14, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 12, 0, 0, 4, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 4, 0, 0, 0, 8, 0, 12, 0, 0, 0, 6, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Theta series of quadratic form (or lattice) with Gram matrix [ 2, 1; 1, 8 ].
The number of integer solutions (x, y) to x^2 + x*y + 4*y^2 = n, discriminant -15. - Ray Chandler, Jul 12 2014
a(n) = number of solutions in integers (x, y) of x^2 + 15*y^2 = 4*n. - Michael Somos, Jul 17 2018

Examples

			G.f. = 1 + 2*q^2 + 6*q^8 + 4*q^12 + 2*q^18 + 4*q^20 + 2*q^30 + 10*q^32 + 4*q^38 + 8*q^48 + 2*q^50 + 4*q^62 + 8*q^68 + 6*q^72 + 8*q^80 + 8*q^92 + 2*q^98 + ...
G.f. = 1 + 2*x + 6*x^4 + 4*x^6 + 2*x^9 + 4*x^10 + 2*x^15 + 10*x^16 + 4*x^19 + ... - _Michael Somos_, Jul 17 2018
		

Crossrefs

Cf. A260671.

Programs

  • Mathematica
    r[n_] := Reduce[x^2 + x*y + 4*y^2 == n, {x, y}, Integers]; Table[rn = r[n]; Which[rn === False, 0, Head[rn] === Or, Length[rn], Head[rn] === And, 1], {n, 0, 105}] (* Jean-François Alcover, Nov 05 2015, after the comment by Ray Chandler *)
    a[0] = 1; a[n_] := With[{K = KroneckerSymbol}, DivisorSum[n, K[-15, #] + K[#, 3]*K[n/#, 5]&]]; Table[a[n], {n, 0, 103}] (* Jean-François Alcover, Jul 07 2017, after Michael Somos *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] EllipticTheta[ 3, 0, x^15] + EllipticTheta[ 2, 0, x] EllipticTheta[ 2, 0, x^15], {x, 0, n}]; (* Michael Somos, Jul 17 2018 *)
  • PARI
    {a(n) = if( n<1, n==0, qfrep([2, 1;1, 8], n, 1)[n]*2)}; /* Michael Somos, Aug 26 2006 */
    
  • PARI
    {a(n) = if( n<1, n==0, sumdiv(n, d, kronecker(-15, d) + kronecker(d, 3) * kronecker(n/d, 5) ))}; /* Michael Somos, Aug 26 2006 */

Formula

Expansion of phi(q) * phi(q^15) + 4 * q^4 * psi(q^2) * psi(q^30) in powers of q where phi(), psi() are Ramanujan theta functions. - Michael Somos, Aug 26 2006
Expansion of (eta(q^3) * eta(q^5))^2 / (eta(q)* eta(q^15)) + (eta(q) *eta(q^15))^2 / (eta(q^3) * eta(q^5)) in powers of q. - Michael Somos, Aug 26 2006
a(n) = A260671(4*n). - Michael Somos, Jul 17 2018

A260675 Expansion of psi(x^2) * phi(x^15) in powers of x where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 2, 0, 0, 1, 2, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 2, 3, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Nov 14 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x^2 + x^6 + x^12 + 2*x^15 + 2*x^17 + x^20 + 2*x^21 + 2*x^27 + ...
G.f. = q + q^9 + q^25 + q^49 + 2*q^61 + 2*q^69 + q^81 + 2*q^85 + 2*q^109 + ...
		

Crossrefs

Cf. A260671.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (1/2) x^(-1/4) EllipticTheta[ 2, 0, x] EllipticTheta[ 3, 0, x^15], {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A)^2 * eta(x^30 + A)^5 / (eta(x^2 + A) * eta(x^15 + A)^2 * eta(x^60 + A)^2), n))};

Formula

Expansion of q^(-1/4) * eta(q^4)^2 * eta(q^30)^5 / (eta(q^2) * eta(q^15)^2 * eta(q^60)^2) in powers of q.
Euler transform of a period 60 sequence.
2 * a(n) = A260671(4*n + 1).

A260676 Expansion of phi(x) * psi(x^30) in powers of x where phi(), chi() are Ramanujan theta functions.

Original entry on oeis.org

1, 2, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 2, 0, 0, 2, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Nov 14 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x + 2*x^4 + 2*x^9 + 2*x^16 + 2*x^25 + x^30 + 2*x^31 + 2*x^34 + ...
G.f. = q^15 + 2*q^19 + 2*q^31 + 2*q^51 + 2*q^79 + 2*q^115 + q^135 + 2*q^139 + ...
		

Crossrefs

Cf. A260671.

Programs

  • Magma
    m:=130;
    f:= func< q | (&*[( (1-q^(2*n))^5*(1-q^(60*n))^2 )/( (1-q^n)^2*(1-q^(4*n))^2*(1-q^(30*n)) ): n in [1..m+1]]) >;
    R:=PowerSeriesRing(Integers(), m);
    Coefficients(R!( f(x) )); // G. C. Greubel, Feb 02 2023
    
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[3, 0, x] QPochhammer[x^60]^2 / QPochhammer[x^30], {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^60 + A)^2 / (eta(x + A)^2 * eta(x^4 + A)^2 * eta(x^30 + A)), n))};
    
  • SageMath
    m = 130
    def f(q): return product( ((1-q^(2*n))^5*(1-q^(60*n))^2)/((1-q^n)^2*(1-q^(4*n))^2*(1-q^(30*n))) for n in range(1,m+2))
    def A260676_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( f(x) ).list()
    A260676_list(m) # G. C. Greubel, Feb 02 2023

Formula

Expansion of q^(-15/4) * eta(q^2)^5 * eta(q^60)^2 / (eta(q)^2 * eta(q^4)^2 * eta(q^30)) in powers of q.
Euler transform of a period 60 sequence.
2 * a(n) = A260671(4*n + 15).
Showing 1-4 of 4 results.