cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A260671 Expansion of theta_3(q) * theta_3(q^15) in powers of q.

Original entry on oeis.org

1, 2, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 6, 0, 0, 4, 0, 0, 0, 0, 4, 2, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 10, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 4, 0, 0, 4, 0, 2, 0, 0, 0, 4, 0
Offset: 0

Views

Author

Michael Somos, Nov 14 2015

Keywords

Comments

a(n) is the number of solutions in integers (x, y) of x^2 + 15*y^2 = n. - Michael Somos, Jul 17 2018

Examples

			G.f. = 1 + 2*x + 2*x^4 + 2*x^9 + 2*x^15 + 6*x^16 + 4*x^19 + 4*x^24 + 2*x^25 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^15], {q, 0, n}];
  • PARI
    {a(n) = if( n<1, n==0, qfrep([1, 0; 0, 15], n)[n]*2)};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^30 + A))^5 / (eta(x + A) * eta(x^4 + A) * eta(x^15 + A) * eta(x^60 + A))^2, n))};
    
  • PARI
    q='q+O('q^99); Vec((eta(q^2)*eta(q^30))^5/(eta(q)*eta(q^4)*eta(q^15)*eta(q^60))^2) \\ Altug Alkan, Jul 18 2018

Formula

Expansion of (eta(q^2) * eta(q^30))^5 / (eta(q) * eta(q^4) * eta(q^15) * eta(q^60))^2 in powers of q.
Euler transform of a period 60 sequence.
G.f. is a period 1 Fourier series which satisfies f(-1 / (60 t)) = 60^(1/2) (t/i) f(t) where q = exp(2 Pi i t).
G.f.: (Sum_{k in Z} x^(k^2)) * (Sum_{k in Z} x^(15*k^2)).
a(3*n + 2) = a(4*n + 2) = a(5*n + 2) = a(5*n + 3) = 0.
a(4*n) = A028625(n). a(4*n + 1) = 2 * A260675(n). a(4*n + 3) = 2 * A260676(n).
a(5*n) = A192323(n).
a(n) = A122855(n) + A140727(n).
Showing 1-1 of 1 results.