cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192366 Denominators of a companion to the Bernoulli numbers.

Original entry on oeis.org

1, 2, 2, 3, 6, 15, 30, 35, 70, 105, 210, 1155, 2310, 5005, 10010, 15015, 30030, 255255, 510510, 1616615, 3233230, 969969, 1939938, 22309287, 44618574, 37182145, 74364290, 111546435, 223092870, 3234846615, 6469693230
Offset: 0

Views

Author

Paul Curtz, Jul 01 2011

Keywords

Comments

For the numerators of the companion to the Bernoulli numbers and detailed information see A191754.

Examples

			The first rows of BC(n,m) matrix are
0,      1/2,   1/2,   1/3,     1/6,   1/15,
1/2,      0,  -1/6,  -1/6,   -1/10,  -1/30,
-1/2,  -1/6,     0,  1/15,    1/15,   1/35,
1/3,    1/6,  1/15,     0,  -4/105, -4/105,
-1/6, -1/10, -1/15, -4/105,      0,  4/105,
1/15,  1/30,  1/35,  4/105,  4/105,      0.
		

Crossrefs

Cf. A191754 (numerator).

Programs

  • Maple
    nmax:=30: mmax:=nmax: A164555:=proc(n): if n=1 then 1 else numer(bernoulli(n)) fi: end: A027642:=proc(n): if n=1 then 2 else denom(bernoulli(n)) fi: end: for m from 0 to 2*mmax do T(0,m) := A164555(m)/A027642(m) od: for n from 1 to nmax do for m from 0 to 2*mmax do T(n,m) := T(n-1,m+1)-T(n-1,m) od: od: for n from 0 to nmax do BC(n,n) :=0 : BC(n,n+1) := T(n,n+1) od: for m from 2 to 2*mmax do for n from 0 to m-2 do BC(n,m) := BC(n,m-1) + BC(n+1,m-1) od: od: for n from 0 to 2*nmax do BC(n,0) := (-1)^(n+1)*BC(0,n) od: for m from 1 to mmax do for n from 2 to 2*nmax do BC(n,m) := BC(n,m-1) + BC(n+1,m-1) od: od: for n from 0 to nmax do seq(BC(n,m),m=0..mmax) od: seq(BC(0,n),n=0..nmax): seq(denom(BC(0,n)), n=0..nmax); [Johannes W. Meijer, Jul 02 2011]
  • Mathematica
    max = 30; b[n_] := BernoulliB[n]; b[1]=1/2; bb = Table[b[n], {n, 0, max}]; diff = Table[ Differences[bb, n], {n, 1, Ceiling[max/2]}]; dd = Diagonal[diff]; bc[n_, n_] = 0; bc[n_, m_] /; m < n := bc[n, m] = bc[n-1, m+1] - bc[n-1, m]; bc[n_, m_] /; m == n+1 := bc[n, m] = -dd[[n+1]]; bc[n_, m_] /; m > n+1 := bc[n, m] = bc[n, m-1] + bc[n+1, m-1]; Table[bc[0, m], {m, 0, max}] // Denominator (* Jean-François Alcover, Aug 08 2012 *)

Formula

a(2*n+2)/a(2*n+1) = 2 for n>1.

Extensions

Edited and Maple program added by Johannes W. Meijer, Jul 02 2011.