cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A117575 Expansion of (1-x^3)/((1-x)*(1+2*x^2)).

Original entry on oeis.org

1, 1, -1, -2, 2, 4, -4, -8, 8, 16, -16, -32, 32, 64, -64, -128, 128, 256, -256, -512, 512, 1024, -1024, -2048, 2048, 4096, -4096, -8192, 8192, 16384, -16384, -32768, 32768, 65536, -65536, -131072, 131072, 262144, -262144, -524288, 524288
Offset: 0

Views

Author

Paul Barry, Mar 29 2006

Keywords

Comments

Row sums of A116949.
From Paul Curtz, Oct 24 2012: (Start)
b(n) = abs(a(n)) = A158780(n+1) = 1,1,1,2,2,4,4,8,8,8,... .
Consider the autosequence (that is a sequence whose inverse binomial transform is equal to the signed sequence) of the first kind of the example. Its numerator is A046978(n), its denominator is b(n). The numerator of the first column is A075553(n).
The denominator corresponding to the 0's is a choice.
The classical denominator is 1,1,1,2,1,4,4,8,1,16,16,32,1,... . (End)

Examples

			   0/1,  1/1    1/1,   1/2,   0/2,  -1/4,  -1/4,  -1/8, ...
   1/1,  0/1,  -1/2,  -1/2,  -1/4,   0/4,   1/8,   1/8, ...
  -1/1, -1/2,   0/2,   1/4,   1/4,   1/8,   0/8, -1/16, ...
   1/2,  1/2,   1/4,   0/4   -1/8,  -1/8, -1/16,  0/16, ...
   0/2, -1/4,  -1/4,  -1/8,   0/8,  1/16,  1/16,  1/32, ...
  -1/4,  0/4,   1/8,   1/8,  1/16,  0/16, -1/32, -1/32, ...
   1/4,  1/8,   0/8, -1/16, -1/16, -1/32,  0/32,  1/64, ...
  -1/8, -1/8, -1/16,  0/16,  1/32,  1/32,  1/64,  0/64. - _Paul Curtz_, Oct 24 2012
		

Crossrefs

The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A029744 = {s(n), n>=1}, the numbers 2^k and 3*2^k, as the parent: A029744 (s(n)); A052955 (s(n)-1), A027383 (s(n)-2), A354788 (s(n)-3), A347789 (s(n)-4), A209721 (s(n)+1), A209722 (s(n)+2), A343177 (s(n)+3), A209723 (s(n)+4); A060482, A136252 (minor differences from A354788 at the start); A354785 (3*s(n)), A354789 (3*s(n)-7). The first differences of A029744 are 1,1,1,2,2,4,4,8,8,... which essentially matches eight sequences: A016116, A060546, A117575, A131572, A152166, A158780, A163403, A320770. The bisections of A029744 are A000079 and A007283. - N. J. A. Sloane, Jul 14 2022

Programs

  • Magma
    [1] cat [(-1)^Floor(n/2)*2^Floor((n-1)/2): n in [1..50]]; // G. C. Greubel, Apr 19 2023
    
  • Mathematica
    CoefficientList[Series[(1-x^3)/((1-x)(1+2x^2)),{x,0,40}],x] (* or *) LinearRecurrence[{0,-2},{1,1,-1},45] (* Harvey P. Dale, Apr 09 2018 *)
  • PARI
    a(n)=if(n,(-1)^(n\2)<<((n-1)\2),1) \\ Charles R Greathouse IV, Jan 31 2012
    
  • SageMath
    def A117575(n): return 1 if (n==0) else (-1)^(n//2)*2^((n-1)//2)
    [A117575(n) for n in range(51)] # G. C. Greubel, Apr 19 2023

Formula

a(n) = a(n-1) - 2*a(n-2) + 2*a(n-3) for n >= 3.
a(n) = (cos(Pi*n/2) + sin(Pi*n/2)) * (2^((n-1)/2)*(1-(-1)^n)/2 + 2^((n-2)/2)*(1+(-1)^n)/2 + 0^n/2).
a(n+1) = Sum_{k=0..n} A122016(n,k)*(-1)^k. - Philippe Deléham, Jan 31 2012
E.g.f.: (1 + cos(sqrt(2)*x) + sqrt(2)*sin(sqrt(2)*x))/2. - Stefano Spezia, Feb 05 2023
a(n) = (-1)^floor(n/2)*2^floor((n-1)/2), with a(0) = 1. - G. C. Greubel, Apr 19 2023

A191754 Numerators of a companion to the Bernoulli numbers.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 41, 41, -589, -589, 8317, 8317, -869807, -869807, 43056421, 43056421, -250158593, -250158593, 67632514765, 67632514765, -1581439548217, -1581439548217
Offset: 0

Views

Author

Paul Curtz, Jun 15 2011

Keywords

Comments

The companion to the Bernoulli numbers BC(0, m) = A191754(m)/A192366(m) is, just like the Bernoulli numbers T(0, m) = A164555(m)/A027642(m), see A190339 for the T(n, m), an autosequence of the second kind, i.e., its inverse binomial transform is the sequence signed.
In order to construct the companion array BC(n, m) we use the following rules: the main diagonal BC(n, n) = 0, the first upper diagonal BC(n, n+1) = T(n, n+1) and recurrence relation BC(n, m) = BC(n-1, m+1) - BC(n-1, m). The companion to the Bernoulli numbers appears in the first row of the BC(n, m) array, i.e., BC(0, m) = A191754(m)/A192366(m).
For the denominators of the companion to the Bernoulli numbers see A192366.

Examples

			The first few rows of the BC(n,m) matrix are:
0,        1/2,   1/2,    1/3,    1/6,    1/15,    1/30,
1/2,        0,  -1/6,   -1/6,  -1/10,   -1/30,  -1/210,
-1/2,    -1/6,     0,   1/15,   1/15,    1/35,  -1/105,
1/3,      1/6,  1/15,      0, -4/105,  -4/105,       0,
-1/6,   -1/10, -1/15, -4/105,      0,   4/105,   4/105,
1/15,    1/30,  1/35,  4/105,  4/105,       0, -16/231,
-1/30, -1/210, 1/105,      0, -4/105, -16/231,       0,
		

Crossrefs

Programs

  • Maple
    nmax:=26: mmax:=nmax: A164555:=proc(n): if n=1 then 1 else numer(bernoulli(n)) fi: end: A027642:=proc(n): if n=1 then 2 else denom(bernoulli(n)) fi: end: for m from 0 to 2*mmax do T(0,m):=A164555(m)/A027642(m) od: for n from 1 to nmax do for m from 0 to 2*mmax do T(n,m):= T(n-1,m+1)-T(n-1,m) od: od: for n from 0 to nmax do BC(n,n):=0: BC(n,n+1) := T(n,n+1) od: for m from 2 to 2*mmax do for n from 0 to m-2 do BC(n,m):=BC(n,m-1) + BC(n+1,m-1) od: od: for n from 0 to 2*nmax do BC(n,0):=(-1)^(n+1)*BC(0,n) od: for m from 1 to mmax do for n from 2 to 2*nmax do BC(n,m) := BC(n,m-1) + BC(n+1,m-1) od: od: for n from 0 to nmax do seq(BC(n,m),m=0..mmax) od: seq(BC(0,n),n=0..nmax): seq(numer(BC(0,n)),n=0..nmax); # Johannes W. Meijer, Jul 02 2011
  • Mathematica
    max = 26; b[n_] := BernoulliB[n]; b[1]=1/2; bb = Table[b[n], {n, 0, max}]; diff = Table[ Differences[bb, n], {n, 1, Ceiling[max/2]}]; dd = Diagonal[diff]; bc[n_, n_] = 0; bc[n_, m_] /; m < n := bc[n, m] = bc[n-1, m+1] - bc[n-1, m]; bc[n_, m_] /; m == n+1 := bc[n, m] = -dd[[n+1]]; bc[n_, m_] /; m > n+1 := bc[n, m] = bc[n, m-1] + bc[n+1, m-1]; Table[bc[0, m], {m, 0, max}] // Numerator (* Jean-François Alcover, Aug 08 2012 *)

Formula

a(2*n+2)/a(2*n+1) = A000012(n)
BC(n, n) = 0, BC(n, n+1) = T(n, n+1) = T(n, n)/2 and BC(n, m) = BC(n-1, m+1) - BC(n-1, m); for the T(n, n+1) see A190339.
BC(0, m) = A191754(m)/A192366(m), i.e., the companion to the Bernoulli numbers.
Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*A191754(k)/A192366(k). = (-1)^(n+1)*A191754(n)/ A192366(n).
Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*A164555(k)/A027642(k). = (-1)^n*A164555(n)/A027642(n).
b(n) = A191754(n)/A192366(n) + A164555(n)/A027642(n) = [1, 1, 2/3, 1/3, 2/15, 1/15, 2/35, 1/35, -2/105, -1/105, ...] leads to b(2*n)/b(2*n+1) = 2 for n>1.

Extensions

Edited by Johannes W. Meijer, Jul 02 2011

A309675 a(n) = 4^n^2 + n!.

Original entry on oeis.org

2, 5, 258, 262150, 4294967320, 1125899906842744, 4722366482869645214416, 316912650057057350374175806384, 340282366920938463463374607431768251776, 5846006549323611672814739330865132078623730534784, 1606938044258990275541962092341162602522202993782792838930176
Offset: 0

Views

Author

Andrew M. Kamal, Aug 11 2019

Keywords

Examples

			a(1) = 5 since 1^1=1, (4^1) + 1! = 5;
a(2) = 4^2^2 = 4^4 = 256, 256 + 2! = 256 + 2*1 = 258.
		

Crossrefs

Showing 1-3 of 3 results.