A192369 Number of lattice paths from (0,0) to (n,n) using steps (0,1), (0,2), (1,0), (2,0), and (2,2).
1, 2, 15, 90, 617, 4248, 29945, 213404, 1535661, 11129314, 81123369, 594092166, 4367701295, 32216566492, 238301617605, 1766979857196, 13129849298327, 97746629874786, 728897653778335, 5443488765350770, 40706993579981847, 304779612155116444, 2284440756129389775, 17139937071103287600
Offset: 0
Keywords
Programs
-
Maple
p4 := (x-1)*(x^3+5*x^2+7*x-1); ogf := sqrt(((2*x^2+4*x-3)/p4-2/sqrt(p4))/(4*x^2-8*x-5)); series(ogf, x=0, 30); # Mark van Hoeij, Apr 16 2013
-
PARI
/* same as in A092566 but use */ steps=[[0,1], [0,2], [1,0], [2,0], [2,2]]; /* Joerg Arndt, Jun 30 2011 */
Formula
G.f. is a nested square root, see Maple program. - Mark van Hoeij, Apr 16 2013
Extensions
Terms > 81123369 from Joerg Arndt, Jun 30 2011
Comments