cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192371 Number of lattice paths from (0,0) to (n,n) using steps (1,1), (0,2), (2,0), (0,3), (3,0).

Original entry on oeis.org

1, 1, 3, 9, 25, 87, 307, 1113, 4149, 15605, 59201, 225999, 866449, 3333847, 12865335, 49769689, 192945411, 749396493, 2915432049, 11358771965, 44313108627, 173081422997, 676766482917, 2648843996031, 10376891445525, 40685535827325, 159641884780749, 626849029013919, 2463010645910537, 9683604464279235
Offset: 0

Views

Author

Joerg Arndt, Jul 01 2011

Keywords

Crossrefs

Programs

  • Maple
    s := RootOf( (s^3-s-1)*(s-1)+x*s*(4-3*s), s);
    ogf := sqrt(4*s-3*s^2)*(s^3-4*s^2+2*s+2)/((2*s^2-s-2)*(3*s^3-6*s^2+4*s-2)*(1-x)):
    series(ogf, x=0, 30);  # Mark van Hoeij, Apr 17 2013
    # second Maple program:
    b:= proc(p) b(p):= `if`(p=[0$2], 1, `if`(min(p[])<0, 0,
          add(b(p-l), l=[[1, 1], [0, 2], [2, 0], [0, 3], [3, 0]])))
        end:
    a:= n-> b([n$2]):
    seq(a(n), n=0..30);  # Alois P. Heinz, Aug 18 2014
  • Mathematica
    b[p_List] := b[p] = If[p == {0, 0}, 1, If[Min[p] < 0, 0, Sum[b[p - l], {l, {{1, 1}, {0, 2}, {2, 0}, {3, 0}, {0, 3}}}]]]; a[n_] := b[{n, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 27 2015, after Alois P. Heinz *)
  • PARI
    /* same as in A092566 but use */
    steps=[[1,1], [2,0], [0,2], [3,0], [0,3]];
    /* Joerg Arndt, Jun 30 2011 */

Formula

G.f.: sqrt(4*s-3*s^2)*(s^3-4*s^2+2*s+2)/((2*s^2-s-2)*(3*s^3-6*s^2+4*s-2)*(1-x)) where the function s satisfies (s^3-s-1)*(s-1)+x*s*(4-3*s) = 0. - Mark van Hoeij, Apr 17 2013