A192371 Number of lattice paths from (0,0) to (n,n) using steps (1,1), (0,2), (2,0), (0,3), (3,0).
1, 1, 3, 9, 25, 87, 307, 1113, 4149, 15605, 59201, 225999, 866449, 3333847, 12865335, 49769689, 192945411, 749396493, 2915432049, 11358771965, 44313108627, 173081422997, 676766482917, 2648843996031, 10376891445525, 40685535827325, 159641884780749, 626849029013919, 2463010645910537, 9683604464279235
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
s := RootOf( (s^3-s-1)*(s-1)+x*s*(4-3*s), s); ogf := sqrt(4*s-3*s^2)*(s^3-4*s^2+2*s+2)/((2*s^2-s-2)*(3*s^3-6*s^2+4*s-2)*(1-x)): series(ogf, x=0, 30); # Mark van Hoeij, Apr 17 2013 # second Maple program: b:= proc(p) b(p):= `if`(p=[0$2], 1, `if`(min(p[])<0, 0, add(b(p-l), l=[[1, 1], [0, 2], [2, 0], [0, 3], [3, 0]]))) end: a:= n-> b([n$2]): seq(a(n), n=0..30); # Alois P. Heinz, Aug 18 2014
-
Mathematica
b[p_List] := b[p] = If[p == {0, 0}, 1, If[Min[p] < 0, 0, Sum[b[p - l], {l, {{1, 1}, {0, 2}, {2, 0}, {3, 0}, {0, 3}}}]]]; a[n_] := b[{n, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 27 2015, after Alois P. Heinz *)
-
PARI
/* same as in A092566 but use */ steps=[[1,1], [2,0], [0,2], [3,0], [0,3]]; /* Joerg Arndt, Jun 30 2011 */
Formula
G.f.: sqrt(4*s-3*s^2)*(s^3-4*s^2+2*s+2)/((2*s^2-s-2)*(3*s^3-6*s^2+4*s-2)*(1-x)) where the function s satisfies (s^3-s-1)*(s-1)+x*s*(4-3*s) = 0. - Mark van Hoeij, Apr 17 2013