Original entry on oeis.org
0, 1, 2, 14, 42, 203, 724, 3100, 11844, 48517, 190358, 766922, 3039726, 12169871, 48422248, 193402552, 770650824, 3075264841, 12260822378, 48909765254, 195040307826, 777935950355, 3102468986044, 12373867741396, 49349446870668
Offset: 1
A192373
Constant term in the reduction of the polynomial p(n,x) defined at A162517 and below in Comments.
Original entry on oeis.org
1, 0, 7, 8, 77, 192, 1043, 3472, 15529, 57792, 240655, 934808, 3789653, 14963328, 60048443, 238578976, 953755537, 3798340224, 15162325975, 60438310184, 241126038941, 961476161856, 3835121918243, 15294304429744, 61000836720313, 243280700771904
Offset: 1
The first five polynomials p(n,x) and their reductions are as follows:
p(0,x)=1 -> 1
p(1,x)=2x -> 2x
p(2,x)=4+x+3x^2 -> 7+4x
p(3,x)=16x+4x^2+4x^3 -> 8+28x
p(4,x)=16+8x+41x^2+10x^3+5x^4 -> 77+84x.
From these, read A192352=(1,0,7,8,77,...) and A049602=(0,2,4,28,84,...).
-
q[x_] := x + 1; d = Sqrt[x + 4];
p[n_, x_] := ((x + d)^n - (x - d)^n )/(2 d) (* A162517 *)
Table[Expand[p[n, x]], {n, 1, 6}]
reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)}; t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 1, 30}]
Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}] (* A192373 *)
Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}] (* A192374 *)
Table[Coefficient[Part[t, n]/2, x, 1], {n, 1, 30}] (* A192375 *)
Showing 1-2 of 2 results.
Comments