A192386 Constant term of the reduction by x^2 -> x+1 of the polynomial p(n,x) defined below in Comments.
1, 0, 8, 8, 96, 224, 1408, 4608, 22784, 86016, 386048, 1548288, 6676480, 27467776, 116490240, 484409344, 2040135680, 8521777152, 35786063872, 149761818624, 628140015616, 2630784909312, 11028578435072, 46205266558976, 193656954814464
Offset: 1
Examples
The first five polynomials p(n,x) and their reductions are as follows: p(0, x) = 1 -> 1 p(1, x) = 2*x -> 2*x p(2, x) = 3 + x + 3*x^2 -> 8 + 4*x p(3, x) = 12*x + 4*x^2 + 4*x^3 -> 8 + 32*x p(4, x) = 9 + 6*x + 31*x^2 + 10*x^3 + 5*x^4 -> 96 + 96*x. From these, read A192386 = (1, 0, 8, 8, 96, ...) and A192387 = (0, 2, 4, 32, 96, ...).
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (2,12,-8,-16).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 41); Coefficients(R!( x*(1-2*x-4*x^2)/(1-2*x-12*x^2+8*x^3+16*x^4) )); // G. C. Greubel, Jul 10 2023 -
Mathematica
q[x_]:= x+1; d= Sqrt[x+5]; p[n_, x_]:= ((x+d)^n - (x-d)^n)/(2*d); (* suggested by A162517 *) Table[Expand[p[n, x]], {n,6}] reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)}; t = Table[ FixedPoint[Expand[#1 /. reductionRules] &, p[n, x]], {n, 1, 30}]; Table[Coefficient[Part[t, n], x, 0], {n,30}] (* A192386 *) Table[Coefficient[Part[t, n], x, 1], {n,30}] (* A192387 *) Table[Coefficient[Part[t, n]/2, x, 1], {n,30}] (* A192388 *) LinearRecurrence[{2,12,-8,-16}, {1,0,8,8}, 40] (* G. C. Greubel, Jul 10 2023 *)
-
SageMath
@CachedFunction def a(n): # a = A192386 if (n<5): return (0,1,0,8,8)[n] else: return 2*a(n-1) +12*a(n-2) -8*a(n-3) -16*a(n-4) [a(n) for n in range(1,41)] # G. C. Greubel, Jul 10 2023
Formula
From Colin Barker, May 11 2014: (Start)
a(n) = 2*a(n-1) + 12*a(n-2) - 8*a(n-3) - 16*a(n-4).
G.f.: x*(1-2*x-4*x^2)/(1-2*x-12*x^2+8*x^3+16*x^4). (End)
From G. C. Greubel, Jul 10 2023: (Start)
T(n, k) = [x^k] ((x+sqrt(x+5))^n - (x-sqrt(x+5))^n)/(2*sqrt(x+5)).
a(n) = Sum_{k=0..n-1} T(n, k)*Fibonacci(k-1). (End)
Comments