A192389 Coefficient of x in the reduction by x^2 -> x+1 of the polynomial p(n,x) defined at Comments.
0, 1, 3, 9, 22, 48, 96, 181, 327, 573, 982, 1656, 2760, 4561, 7491, 12249, 19966, 32472, 52728, 85525, 138615, 224541, 363598, 588624, 952752, 1541953, 2495331, 4037961, 6534022, 10572768, 17107632, 27681301, 44789895, 72472221, 117263206
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-5,1,2,-1).
Programs
-
GAP
List([0..40], n-> 3*Fibonacci(n+2)-n*(n+4)-9); # G. C. Greubel, Jul 24 2019
-
Magma
[3*Fibonacci(n+2)-n*(n+4)-9: n in [0..40]]; // G. C. Greubel, Jul 24 2019
-
Mathematica
(* First program *) p[0, x]:= 1; p[n_, x_]:= x*p[n-1, x] +n^2 +1; Table[Expand[p[n, x]], {n, 0, 7}] reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}]; u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192953 *) u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192389 *) (* Additional programs *) CoefficientList[Series[x*(1-x+2*x^2)/((1-x)^3*(1-x-x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, May 13 2014 *) Table[3*Fibonacci[n+4] -n*(n+4)-9, {n,0,40}] (* G. C. Greubel, Jul 24 2019 *)
-
PARI
Vec(x*(1-x+2*x^2)/((1-x)^3*(1-x-x^2)) + O(x^40)) \\ Colin Barker, May 12 2014
-
PARI
vector(40, n, n--; 3*fibonacci(n+2)-n*(n+4)-9) \\ G. C. Greubel, Jul 24 2019
-
Sage
[3*fibonacci(n+2)-n*(n+4)-9 for n in (0..40)] # G. C. Greubel, Jul 24 2019
Formula
a(n) = 4*a(n-1) - 5*a(n-2) + a(n-3) + 2*a(n-4) - a(n-5).
G.f.: x*(1-x+2*x^2)/((1-x)^3*(1-x-x^2)). - Colin Barker, May 12 2014
a(n) = 3*Fibonacci(n+4) - n*(n+4) - 9. - Ehren Metcalfe, Jul 13 2019
Comments