A192396 Square array T(n, k) = floor(((k+1)^n - (1+(-1)^k)/2)/2) read by antidiagonals.
0, 0, 0, 0, 1, 0, 0, 2, 1, 0, 0, 4, 4, 2, 0, 0, 8, 13, 8, 2, 0, 0, 16, 40, 32, 12, 3, 0, 0, 32, 121, 128, 62, 18, 3, 0, 0, 64, 364, 512, 312, 108, 24, 4, 0, 0, 128, 1093, 2048, 1562, 648, 171, 32, 4, 0, 0, 256, 3280, 8192, 7812, 3888, 1200, 256, 40, 5, 0
Offset: 0
Examples
T(2,4)=12: there are 12 compositions of odd natural numbers into 2 parts <=4 1: (0,1), (1,0); 3: (1,2), (2,1), (0,3), (3,0); 5: (1,4), (4,1), (2,3), (3,2); 7: (3,4), (4,3). The table starts 0, 0, 0, 0, 0, 0, ... A000004; 0, 1, 1, 2, 2, 3, ... A004526; 0, 2, 4, 8, 12, 18, ... A007590; 0, 4, 13, 32, 62, 108, ... A036487; 0, 8, 40, 128, 312, 648, ... A191903; 0, 16, 121, 512, 1562, 3888, ... A191902; . . . . ... with columns: A000004, A000079, A003462, A004171, A128531, A081341, ... . Antidiagonal triangle begins: 0; 0, 0; 0, 1, 0; 0, 2, 1, 0; 0, 4, 4, 2, 0; 0, 8, 13, 8, 2, 0; 0, 16, 40, 32, 12, 3, 0; 0, 32, 121, 128, 62, 18, 3, 0; 0, 64, 364, 512, 312, 108, 24, 4, 0;
Links
- G. C. Greubel, Antidiagonals n = 0..50, flattened
- Adi Dani, Restricted compositions of natural numbers
Crossrefs
Programs
-
Magma
A192396:= func< n,k | Floor(((k+1)^n - (1+(-1)^k)/2)/2) >; [A192396(n-k,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 11 2023
-
Maple
A192396 := proc(n,k) (k+1)^n-(1+(-1)^k)/2 ; floor(%/2) ; end proc: seq(seq( A192396(d-k,k),k=0..d),d=0..10) ; # R. J. Mathar, Jun 30 2011
-
Mathematica
T[n_, k_]:= Floor[((k+1)^n - (1+(-1)^k)/2)/2]; Table[T[n-k,k], {n,0,12}, {k,0,n}]//Flatten
-
SageMath
def A192396(n,k): return ((k+1)^n - ((k+1)%2))//2 flatten([[A192396(n-k,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 11 2023
Comments