A192405
G.f. satisfies: A(x) = 1 + Sum_{n>=1} x^(n+1) * A(x)^n/(1 - x*A(x)^(2*n)).
Original entry on oeis.org
1, 0, 1, 2, 4, 11, 33, 99, 310, 1016, 3413, 11682, 40751, 144476, 519013, 1886311, 6928012, 25684055, 96020957, 361742039, 1372442092, 5241062187, 20136335035, 77806111700, 302259125863, 1180207733657, 4630733662020, 18254415188073, 72283753111667
Offset: 0
G.f.: A(x) = 1 + x^2 + 2*x^3 + 4*x^4 + 11*x^5 + 33*x^6 + 99*x^7 +...
which satisfies the following relations:
A(x) = 1 + x^2*A(x)/(1-x*A(x)^2) + x^3*A(x)^2/(1-x*A(x)^4) + x^4*A(x)^3/(1-x*A(x)^6) +...
A(x) = 1 + x^2*A(x)/(1-x*A(x)) + x^3*A(x)^3/(1-x*A(x)^3) + x^4*A(x)^5/(1-x*A(x)^5) +...
A(x) = 1 + x^2*A(x) + x^3*A(x)^3*(1 + 1/A(x)) + x^4*A(x)^6*(1 + 1/A(x) + 1/A(x)^3) + x^5*A(x)^10*(1 + 1/A(x) + 1/A(x)^3 + 1/A(x)^6) +...
-
{a(n)=local(A=1+x^2);for(i=1,n,A=1+x*sum(m=1,n,x^m*A^m/(1-x*A^(2*m)+x*O(x^n))));polcoeff(A,n)}
-
{a(n)=local(A=1+x^2);for(i=1,n,A=1+x*sum(m=1,n,x^m*A^(2*m-1)/(1-x*A^(2*m-1)+x*O(x^n))));polcoeff(A,n)}
-
{a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,x^(m+1)*A^(m*(m+1)/2)*sum(k=0,m-1,(A+x*O(x^n))^(-k*(k+1)/2) ) ) );polcoeff(A,n)}
A192400
G.f. A(x) satisfies A(x) = 1 + Sum_{n>=1} A(x)^n * x^(2*n-1)/(1 - x^(2*n-1)).
Original entry on oeis.org
1, 1, 2, 5, 11, 26, 64, 158, 399, 1027, 2675, 7052, 18788, 50487, 136711, 372687, 1021942, 2816873, 7800510, 21691134, 60543553, 169561453, 476351239, 1342002198, 3790565335, 10732246631, 30453309502, 86589559266, 246672752090
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 11*x^4 + 26*x^5 + 64*x^6 +...
which satisfies the following relations:
A(x) = 1 + A(x)*x/(1-x) + A(x)^2*x^3/(1-x^3) + A(x)^3*x^5/(1-x^5) +...
A(x) = 1 + A(x)*x/(1-A(x)*x^2) + A(x)*x^2/(1-A(x)*x^4) + A(x)*x^3/(1-A(x)*x^6) +...
-
{a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,A^m*x^(2*m-1)/(1-x^(2*m-1)+x*O(x^n))));polcoeff(A,n)}
-
{a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,A*x^m/(1-A*x^(2*m)+x*O(x^n))));polcoeff(A,n)}
A192403
G.f. A(x) satisfies A(x) = 1 + Sum_{n>=1} A(x)^n * 2*x^n/(1 - 2*x^(2*n)).
Original entry on oeis.org
1, 2, 6, 26, 106, 474, 2210, 10638, 52578, 265286, 1360702, 7074030, 37191694, 197398394, 1056255758, 5691813546, 30860701490, 168236407482, 921576598970, 5070138584230, 28002574339634, 155204886300414, 862985636296302, 4812513873922710
Offset: 0
G.f.: A(x) = 1 + 2*x + 6*x^2 + 26*x^3 + 106*x^4 + 474*x^5 + 2210*x^6 +...
which satisfies the following relations:
A(x) = 1 + A(x)*2*x/(1-2*x^2) + A(x)^2*2*x^2/(1-2*x^4) + A(x)^3*2*x^3/(1-2*x^6) +...
A(x) = 1 + 2*A(x)*x/(1-A(x)*x) + 4*A(x)*x^3/(1-A(x)*x^3) + 8*A(x)*x^5/(1-A(x)*x^5) +...
-
{a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,A^m*2*x^m/(1-2*x^(2*m)+x*O(x^n))));polcoeff(A,n)}
-
{a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,2^m*A*x^(2*m-1)/(1-A*x^(2*m-1)+x*O(x^n))));polcoeff(A,n)}
A307396
G.f. A(x) satisfies: A(x) = 1 + Sum_{k>=1} x^k*A(x)^k/(1 + x^k).
Original entry on oeis.org
1, 1, 1, 4, 9, 25, 78, 235, 734, 2355, 7637, 25096, 83394, 279563, 944559, 3213254, 10996236, 37829956, 130759164, 453879479, 1581472334, 5529435704, 19393856909, 68217376618, 240586328527, 850553637256, 3013750513593, 10700805837614, 38068482070675, 135674217800041
Offset: 0
G.f.: A(x) = 1 + x + x^2 + 4*x^3 + 9*x^4 + 25*x^5 + 78*x^6 + 235*x^7 + 734*x^8 + 2355*x^9 + 7637*x^10 + ...
-
terms = 30; A[] = 0; Do[A[x] = 1 + Sum[x^k A[x]^k /(1 + x^k), {k, 1, j}] + O[x]^j, {j, 1, terms}]; CoefficientList[A[x], x]
terms = 30; A[] = 0; Do[A[x] = 1 + Sum[x^k Sum[(-1)^(k/d + 1) A[x]^d, {d, Divisors[k]}], {k, 1, j}] + O[x]^j, {j, 1, terms}]; CoefficientList[A[x], x]
A307400
G.f. A(x) satisfies: A(x) = 1 + Sum_{k>=1} k*x^k*A(x)^k/(1 + x^k).
Original entry on oeis.org
1, 1, 2, 9, 28, 109, 440, 1790, 7537, 32300, 140438, 618608, 2753510, 12366672, 55973926, 255059808, 1169143476, 5387268256, 24940059514, 115943355422, 541047868905, 2533458659581, 11900017205866, 56055896316345, 264748474342341, 1253414056154014, 5947373587731308
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 9*x^3 + 28*x^4 + 109*x^5 + 440*x^6 + 1790*x^7 + 7537*x^8 + 32300*x^9 + 140438*x^10 + ...
-
terms = 27; A[] = 0; Do[A[x] = 1 + Sum[k x^k A[x]^k/(1 + x^k), {k, 1, j}] + O[x]^j, {j, 1, terms}]; CoefficientList[A[x], x]
terms = 27; A[] = 0; Do[A[x] = 1 + Sum[x^k Sum[(-1)^(k/d + 1) d A[x]^d, {d, Divisors[k]}], {k, 1, j}] + O[x]^j, {j, 1, terms}]; CoefficientList[A[x], x]
A192399
G.f. A(x) satisfies: A(x) = 1 + Sum_{n>=1} x^n * A(x)^n/(1 - x*A(x)^(2*n)).
Original entry on oeis.org
1, 1, 3, 11, 48, 233, 1218, 6722, 38668, 229864, 1403618, 8766186, 55818141, 361499355, 2376956264, 15845876429, 106988044753, 731026642533, 5051920683481, 35296182297157, 249249589433312, 1778775804736254, 12828718640894604
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 11*x^3 + 48*x^4 + 233*x^5 + 1218*x^6 +...
which satisfies the following relations:
A(x) = 1 + x*A(x)/(1-x*A(x)^2) + x^2*A(x)^2/(1-x*A(x)^4) + x^3*A(x)^3/(1-x*A(x)^6) +...
A(x) = 1 + x*A(x)/(1-x*A(x)) + x^2*A(x)^3/(1-x*A(x)^3) + x^3*A(x)^5/(1-x*A(x)^5) +...
A(x) = 1 + x*A(x) + x^2*A(x)^3*(1 + 1/A(x)) + x^3*A(x)^6*(1 + 1/A(x) + 1/A(x)^3) + x^4*A(x)^10*(1 + 1/A(x) + 1/A(x)^3 + 1/A(x)^6) +...
-
{a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,x^m*A^m/(1-x*A^(2*m)+x*O(x^n))));polcoeff(A,n)}
-
{a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,x^m*A^(2*m-1)/(1-x*A^(2*m-1)+x*O(x^n))));polcoeff(A,n)}
-
{a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,x^m*A^(m*(m+1)/2)*sum(k=0,m-1,(A+x*O(x^n))^(-k*(k+1)/2) ) ) );polcoeff(A,n)}
Showing 1-6 of 6 results.
Comments