cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192425 Coefficient of x in the reduction by x^2 -> x+2 of the polynomial p(n,x) defined below in Comments.

Original entry on oeis.org

0, 1, 1, 6, 9, 31, 60, 169, 369, 954, 2201, 5479, 12960, 31721, 75881, 184326, 443169, 1072871, 2585340, 6249329, 15074649, 36413754, 87877681, 212208719, 512231040, 1236774481, 2985612241, 7208270406, 17401713849, 42012408751
Offset: 0

Views

Author

Clark Kimberling, Jun 30 2011

Keywords

Comments

The polynomial p(n,x) is defined by ((x+d)/2)^n + ((x-d)/2)^n, where d = sqrt(x^2+4). For an introduction to reductions of polynomials by substitutions such as x^2 -> x+2, see A192232.

Examples

			The first five polynomials p(n,x) and their reductions are as follows:
  p(0,x) = 2 -> 2
  p(1,x) = x -> x
  p(2,x) = 2 + x^2 -> 4 + x
  p(3,x) = 3*x + x^3 -> 2 + 6*x
  p(4,x) = 2 + 4*x^2 + x^4 -> 16 + 9*x.
From these, read A192423(n) = = 2*A192424(n) = (2, 0, 4, 2, 16, ...) and a(n) = (0, 1, 1, 6, 9, ...).
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( x*(1+x^2)/((1+x-x^2)*(1-2*x-x^2)) )); // G. C. Greubel, Jul 12 2023
    
  • Mathematica
    (See A192423.)
    LinearRecurrence[{1,4,-1,-1}, {0,1,1,6}, 40] (* G. C. Greubel, Jul 12 2023 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A192425
        if (n<4): return (0,1,1,6)[n]
        else: return a(n-1) +4*a(n-2) -a(n-3) -a(n-4)
    [a(n) for n in range(41)] # G. C. Greubel, Jul 12 2023

Formula

G.f.: x*(1+x^2)/((1+x-x^2)*(1-2*x-x^2)). Colin Barker, Nov 13 2012
From Peter Bala, Mar 26 2015: (Start)
The following remarks assume the o.g.f. for this sequence is x*(1 + x^2)/((1 + x - x^2)*(1 - 2*x - x^2)).
This sequence is a fourth-order linear divisibility sequence. It is the case P1 = 1, P2 = -2, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy.
exp( Sum_{n >= 1} 3*a(n)*x^n/n ) = 1 + Sum_{n >= 1} 3*Pell(n)*x^n.
exp( Sum_{n >= 1} (-3)*a(n)*x^n/n ) = 1 + Sum_{n >= 1} 3*Fibonacci(n)*(-x)^n. Cf. A002878. (End)
From G. C. Greubel, Jul 12 2023: (Start)
a(n) = Sum_{j=0..n} T(n, j)*A001045(j), where T(n, k) = [x^k] ((x + sqrt(x^2+4))^n + (x - sqrt(x^2+4))^n)/2^n.
a(n) = a(n-1) + 4*a(n-2) - a(n-3) - a(n-4).
a(n) = (1/3)*( 2*A000129(n+1) - 2*A000129(n) - (-1)^n*A000032(n)). (End)