A192425 Coefficient of x in the reduction by x^2 -> x+2 of the polynomial p(n,x) defined below in Comments.
0, 1, 1, 6, 9, 31, 60, 169, 369, 954, 2201, 5479, 12960, 31721, 75881, 184326, 443169, 1072871, 2585340, 6249329, 15074649, 36413754, 87877681, 212208719, 512231040, 1236774481, 2985612241, 7208270406, 17401713849, 42012408751
Offset: 0
Examples
The first five polynomials p(n,x) and their reductions are as follows: p(0,x) = 2 -> 2 p(1,x) = x -> x p(2,x) = 2 + x^2 -> 4 + x p(3,x) = 3*x + x^3 -> 2 + 6*x p(4,x) = 2 + 4*x^2 + x^4 -> 16 + 9*x. From these, read A192423(n) = = 2*A192424(n) = (2, 0, 4, 2, 16, ...) and a(n) = (0, 1, 1, 6, 9, ...).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277.
- H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences Integers, Volume 12A (2012) The John Selfridge Memorial Volume
- Index entries for linear recurrences with constant coefficients, signature (1,4,-1,-1).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( x*(1+x^2)/((1+x-x^2)*(1-2*x-x^2)) )); // G. C. Greubel, Jul 12 2023 -
Mathematica
(See A192423.) LinearRecurrence[{1,4,-1,-1}, {0,1,1,6}, 40] (* G. C. Greubel, Jul 12 2023 *)
-
SageMath
@CachedFunction def a(n): # a = A192425 if (n<4): return (0,1,1,6)[n] else: return a(n-1) +4*a(n-2) -a(n-3) -a(n-4) [a(n) for n in range(41)] # G. C. Greubel, Jul 12 2023
Formula
G.f.: x*(1+x^2)/((1+x-x^2)*(1-2*x-x^2)). Colin Barker, Nov 13 2012
From Peter Bala, Mar 26 2015: (Start)
The following remarks assume the o.g.f. for this sequence is x*(1 + x^2)/((1 + x - x^2)*(1 - 2*x - x^2)).
This sequence is a fourth-order linear divisibility sequence. It is the case P1 = 1, P2 = -2, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy.
exp( Sum_{n >= 1} 3*a(n)*x^n/n ) = 1 + Sum_{n >= 1} 3*Pell(n)*x^n.
exp( Sum_{n >= 1} (-3)*a(n)*x^n/n ) = 1 + Sum_{n >= 1} 3*Fibonacci(n)*(-x)^n. Cf. A002878. (End)
From G. C. Greubel, Jul 12 2023: (Start)
a(n) = Sum_{j=0..n} T(n, j)*A001045(j), where T(n, k) = [x^k] ((x + sqrt(x^2+4))^n + (x - sqrt(x^2+4))^n)/2^n.
a(n) = a(n-1) + 4*a(n-2) - a(n-3) - a(n-4).
Comments