A192449 Numerator of h(n+7) - h(n), where h(n) = Sum_{k=1..n} 1/k.
363, 481, 3349, 2761, 25961, 22727, 263111, 237371, 21635, 8837, 695089, 529331, 9407549, 679829, 641069, 6671911, 36404897, 4075097, 2159257, 1412139, 36516143, 35036093, 88771727, 3715069
Offset: 0
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
Programs
-
Maple
h:= n-> sum(1/k,k=1..n):seq(numer(h(n+7)-h(n)), n=0..23); P:=(x,y,z,n)-> floor(((n+x) mod y)/z): m:=n-> P(1,4,3,n)+2*P(0,2,1,n)+2: p:=n-> P(0,3,2,n)+P(7,9,7,n)+1: q:=n-> P(0,5,3,n)+P(15,15,23,n): N7:=n->(7*n^6+168*n^5+1610*n^4+7840*n^3+20307*n^2+26264*n+13068): seq(N7(n)/(2^m(n)*3^p(n)*5^q(n)), n=0..23); # Alternative implementation, R. J. Mathar, Jul 12 2011: A192449 := proc(n) add(1/i,i=n+1..n+7) ; numer(%) ; end proc:
-
Mathematica
#[[8]]-#[[1]]&/@Partition[HarmonicNumber[Range[0,30]],8,1]//Numerator (* Harvey P. Dale, Jul 22 2024 *)
Formula
a(n) = (7*n^6 + 168*n^5 + 1610*n^4 + 7840*n^3 + 20307*n^2 + 26264*n + 13068)/ (2^m(n)*3^p(n)*5^q(n)) where
m(n) = P(1,4,3,n) + 2*P(0,2,1,n) + 2,
p(n) = P(0,3,2,n) + P(7,9,7,n) + 1,
q(n) = P(0,5,3,n) + P(15,15,23,n),
P(x,y,z,n) = floor(((n+x) mod y)/z).
Extensions
Corrected and extended by Harvey P. Dale, Jul 22 2024
Comments