cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192456 Numerators in triangle that leads to the Bernoulli numbers.

Original entry on oeis.org

1, 1, 1, -1, 1, -1, 1, -2, 2, 1, -5, 1, 1, -1, 3, -8, 1, -7, 14, -4, 1, -4, 4, -64, 8, 1, -3, 9, -8, 12, 1, -5, 7, -40, 20, -32, 1, -11, 44, -44, 44, -16, 1, -2, 18, -64, 4, -192, 6112
Offset: 0

Views

Author

Paul Curtz, Jul 01 2011

Keywords

Comments

For the denominators and detailed information see A191302.

Crossrefs

Cf. A191302 (denominators).

Programs

  • Maple
    nmax:=14: mmax:=nmax: A164555:=proc(n): if n=1 then 1 else numer(bernoulli(n)) fi: end: A027642:=proc(n): if n=1 then 2 else denom(bernoulli(n)) fi: end: for m from 0 to 2*mmax do T(0,m):=A164555(m)/A027642(m) od: for n from 1 to nmax do for m from 0 to 2*mmax do T(n,m):=T(n-1,m+1)-T(n-1,m) od: od: seq(T(n,n+1),n=0..nmax): for n from 0 to nmax do ASPEC(n,0):=2: for m from 1 to mmax do ASPEC(n,m):= (2*n+m)*binomial(n+m-1,m-1)/m od: od: for n from 0 to nmax do seq(ASPEC(n,m),m=0..mmax) od: for n from 0 to nmax do for m from 0 to 2*mmax do SBD(n,m):=0 od: od: for m from 0 to mmax do for n from 2*m to nmax do SBD(n,m):= T(m,m+1) od: od: for n from 0 to nmax do seq(SBD(n,m), m= 0..mmax/2) od: for n from 0 to nmax do BSPEC(n,2) := SBD(n,2)*ASPEC(2,n-4) od: for m from 0 to mmax do for n from 0 to nmax do BSPEC(n,m) := SBD(n,m)*ASPEC(m,n-2*m) od: od: for n from 0 to nmax do seq(BSPEC(n,m), m=0..mmax/2) od: seq(add(BSPEC(n, k), k=0..floor(n/2)) ,n=0..nmax): Tx:=0: for n from 0 to nmax do for m from 0 to floor(n/2) do a(Tx):= numer(BSPEC(n,m)): Tx:=Tx+1: od: od: seq(a(n),n=0..Tx-1); # Johannes W. Meijer, Jul 02 2011
  • Mathematica
    (* a=ASPEC, b=BSPEC *) nmax = 13; a[n_, 0] = 2; a[n_, m_] := (2n+m)*Binomial[n+m-1, m-1]/m; b[n_] := BernoulliB[n]; b[1]=1/2; bb = Table[b[n], {n, 0, nmax}]; diff = Table[ Differences[bb, n], {n, 1, nmax}]; dd = Diagonal[diff]; sbd[n_, m_] := If[n >= 2m, -dd[[m+1]], 0]; b[n_, m_] := sbd[n, m]*a[m, n-2m]; Table[b[n, m], {n, 0, nmax}, {m, 0, Floor[n/2]}] // Flatten // Numerator (* Jean-François Alcover, Aug 09 2012 *)

Extensions

Edited and Maple program added by Johannes W. Meijer, Jul 02 2011