A192456 Numerators in triangle that leads to the Bernoulli numbers.
1, 1, 1, -1, 1, -1, 1, -2, 2, 1, -5, 1, 1, -1, 3, -8, 1, -7, 14, -4, 1, -4, 4, -64, 8, 1, -3, 9, -8, 12, 1, -5, 7, -40, 20, -32, 1, -11, 44, -44, 44, -16, 1, -2, 18, -64, 4, -192, 6112
Offset: 0
Crossrefs
Cf. A191302 (denominators).
Programs
-
Maple
nmax:=14: mmax:=nmax: A164555:=proc(n): if n=1 then 1 else numer(bernoulli(n)) fi: end: A027642:=proc(n): if n=1 then 2 else denom(bernoulli(n)) fi: end: for m from 0 to 2*mmax do T(0,m):=A164555(m)/A027642(m) od: for n from 1 to nmax do for m from 0 to 2*mmax do T(n,m):=T(n-1,m+1)-T(n-1,m) od: od: seq(T(n,n+1),n=0..nmax): for n from 0 to nmax do ASPEC(n,0):=2: for m from 1 to mmax do ASPEC(n,m):= (2*n+m)*binomial(n+m-1,m-1)/m od: od: for n from 0 to nmax do seq(ASPEC(n,m),m=0..mmax) od: for n from 0 to nmax do for m from 0 to 2*mmax do SBD(n,m):=0 od: od: for m from 0 to mmax do for n from 2*m to nmax do SBD(n,m):= T(m,m+1) od: od: for n from 0 to nmax do seq(SBD(n,m), m= 0..mmax/2) od: for n from 0 to nmax do BSPEC(n,2) := SBD(n,2)*ASPEC(2,n-4) od: for m from 0 to mmax do for n from 0 to nmax do BSPEC(n,m) := SBD(n,m)*ASPEC(m,n-2*m) od: od: for n from 0 to nmax do seq(BSPEC(n,m), m=0..mmax/2) od: seq(add(BSPEC(n, k), k=0..floor(n/2)) ,n=0..nmax): Tx:=0: for n from 0 to nmax do for m from 0 to floor(n/2) do a(Tx):= numer(BSPEC(n,m)): Tx:=Tx+1: od: od: seq(a(n),n=0..Tx-1); # Johannes W. Meijer, Jul 02 2011
-
Mathematica
(* a=ASPEC, b=BSPEC *) nmax = 13; a[n_, 0] = 2; a[n_, m_] := (2n+m)*Binomial[n+m-1, m-1]/m; b[n_] := BernoulliB[n]; b[1]=1/2; bb = Table[b[n], {n, 0, nmax}]; diff = Table[ Differences[bb, n], {n, 1, nmax}]; dd = Diagonal[diff]; sbd[n_, m_] := If[n >= 2m, -dd[[m+1]], 0]; b[n_, m_] := sbd[n, m]*a[m, n-2m]; Table[b[n, m], {n, 0, nmax}, {m, 0, Floor[n/2]}] // Flatten // Numerator (* Jean-François Alcover, Aug 09 2012 *)
Extensions
Edited and Maple program added by Johannes W. Meijer, Jul 02 2011
Comments