cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A190339 The denominators of the subdiagonal in the difference table of the Bernoulli numbers.

Original entry on oeis.org

2, 6, 15, 105, 105, 231, 15015, 2145, 36465, 969969, 4849845, 10140585, 10140585, 22287, 3231615, 7713865005, 7713865005, 90751353, 218257003965, 1641030105, 67282234305, 368217318651, 1841086593255
Offset: 0

Views

Author

Paul Curtz, May 09 2011

Keywords

Comments

Apparently a(n) = A181131(n) for n>=2 (checked numerically up to n=640). - R. J. Mathar, Aug 25 2025
The denominators of the T(n, n+1) with T(0, m) = A164555(m)/A027642(m) and T(n, m) = T(n-1, m+1) - T(n-1, m), n >= 1, m >= 0. For the numerators of the T(n, n+1) see A191972.
The T(n, m) are defined by A164555(n)/A027642(n) and its successive differences, see the formulas.
Reading the array T(n, m), see the examples, by its antidiagonals leads to A085737(n)/A085738(n).
A164555(n)/A027642(n) is an autosequence (eigensequence whose inverse binomial transform is the sequence signed) of the second kind; the main diagonal T(n, n) is twice the first upper diagonal T(n, n+1).
We can get the Bernoulli numbers from the T(n, n+1) in an original way, see A192456/A191302.
Also the denominators of T(n, n+1) of the table defined by A085737(n)/A085738(n), the upper diagonal, called the median Bernoulli numbers by Chen. As such, Chen proved that a(n) is even only for n=0 and n=1 and that a(n) are squarefree numbers. (see Chen link). - Michel Marcus, Feb 01 2013
The sum of the antidiagonals of T(n,m) is 1 in the first antidiagonal, otherwise 0. Paul Curtz, Feb 03 2015

Examples

			The first few rows of the T(n, m) array (difference table of the Bernoulli numbers) are:
1,       1/2,     1/6,      0,     -1/30,         0,        1/42,
-1/2,   -1/3,    -1/6,  -1/30,      1/30,      1/42,       -1/42,
1/6,     1/6,    2/15,   1/15,    -1/105,     -1/21,      -1/105,
0,     -1/30,   -1/15, -8/105,    -4/105,     4/105,       8/105,
-1/30, -1/30,  -1/105,  4/105,     8/105,     4/105,   -116/1155,
0,      1/42,    1/21,  4/105,    -4/105,   -32/231,     -16/231,
1/42,   1/42,  -1/105, -8/105, -116/1155,    16/231,  6112/15015,
		

References

  • Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187.

Programs

  • Maple
    T := proc(n,m)
        option remember;
        if n < 0 or m < 0 then
            0 ;
        elif n = 0 then
            if m = 1 then
                -bernoulli(m) ;
            else
                bernoulli(m) ;
            end if;
        else
            procname(n-1,m+1)-procname(n-1,m) ;
        end if;
    end proc:
    A190339 := proc(n)
        denom( T(n+1,n)) ;
    end proc: # R. J. Mathar, Apr 25 2013
  • Mathematica
    nmax = 23; b[n_] := BernoulliB[n]; b[1]=1/2; bb = Table[b[n], {n, 0, 2*nmax-1}]; diff = Table[Differences[bb, n], {n, 1, nmax}]; Diagonal[diff] // Denominator (* Jean-François Alcover, Aug 08 2012 *)
  • Sage
    def A190339_list(n) :
        T = matrix(QQ, 2*n+1)
        for m in (0..2*n) :
            T[0,m] = bernoulli_polynomial(1,m)
            for k in range(m-1,-1,-1) :
                T[m-k,k] = T[m-k-1,k+1] - T[m-k-1,k]
        for m in (0..n-1) : print([T[m,k] for k in (0..n-1)])
        return [denominator(T[k,k+1]) for k in (0..n-1)]
    A190339_list(7) # Also prints the table as displayed in EXAMPLE. Peter Luschny, Jun 21 2012

Formula

T(0, m) = A164555(m)/A027642(m) and T(n, m) = T(n-1, m+1) - T(n-1, m), n >= 1, m >= 0.
T(1, m) = A051716(m+1)/A051717(m+1);
T(n, n) = 2*T(n, n+1).
T(n+1, n+1) = (-1)^(1+n)*A181130(n+1)/A181131(n+1). - R. J. Mathar, Jun 18 2011
a(n) = A141044(n)*A181131(n). - Paul Curtz, Apr 21 2013

Extensions

Edited and Maple program added by Johannes W. Meijer, Jun 29 2011, Jun 30 2011
New name from Peter Luschny, Jun 21 2012

A191302 Denominators in triangle that leads to the Bernoulli numbers.

Original entry on oeis.org

1, 2, 2, 3, 2, 2, 2, 3, 15, 2, 6, 3, 2, 1, 5, 105, 2, 6, 15, 15, 2, 3, 3, 105, 105, 2, 2, 5, 7, 35, 2, 3, 3, 21, 21, 231, 2, 6, 15, 15, 21, 21, 2, 1, 5, 15, 1, 77, 15015, 2, 6, 3, 35, 15, 33, 1155
Offset: 0

Views

Author

Paul Curtz, May 30 2011

Keywords

Comments

For the definition of the ASPEC array coefficients see the formulas; see also A029635 (Lucas triangle), A097207 and A191662 (k-dimensional square pyramidal numbers).
The antidiagonal row sums of the ASPEC array equal A042950(n) and A098011(n+3).
The coefficients of the T(n,m) array are defined in A190339. We define the coefficients of the SBD array with the aid of the T(n,n+1), see the formulas and the examples.
Multiplication of the coefficients in the rows of the ASPEC array with the coefficients in the columns of the SBD array leads to the coefficients of the BSPEC triangle, see the formulas. The BSPEC triangle can be looked upon as a spectrum for the Bernoulli numbers.
The row sums of the BSPEC triangle give the Bernoulli numbers A164555(n)/A027642(n).
For the numerators of the BSPEC triangle coefficients see A192456.

Examples

			The first few rows of the array ASPEC array:
  2, 1,  1,  1,   1,   1,    1,
  2, 3,  4,  5,   6,   7,    8,
  2, 5,  9, 14,  20,  27,   35,
  2, 7, 16, 30,  50,  77,  112,
  2, 9, 25, 55, 105, 182,  294,
The first few T(n,n+1) = T(n,n)/2 coefficients:
1/2, -1/6, 1/15, -4/105, 4/105, -16/231, 3056/15015, ...
The first few rows of the SBD array:
  1/2,   0,   0,     0
  1/2,   0,   0,     0
  1/2, -1/6,  0,     0
  1/2, -1/6,  0,     0
  1/2, -1/6, 1/15,   0
  1/2, -1/6, 1/15,   0
  1/2, -1/6, 1/15, -4/105
  1/2, -1/6, 1/15, -4/105
The first few rows of the BSPEC triangle:
  B(0) =   1   = 1/1
  B(1) =  1/2  = 1/2
  B(2) =  1/6  = 1/2 - 1/3
  B(3) =   0   = 1/2 - 1/2
  B(4) = -1/30 = 1/2 - 2/3 +  2/15
  B(5) =   0   = 1/2 - 5/6 +  1/3
  B(6) =  1/42 = 1/2 - 1/1 +  3/5  - 8/105
  B(7) =   0   = 1/2 - 7/6 + 14/15 - 4/15
		

Crossrefs

Cf. A028246 (Worpitzky), A085737/A085738 (Conway-Sloane) and A051714/A051715 (Akiyama-Tanigawa) for other triangles that lead to the Bernoulli numbers. - Johannes W. Meijer, Jul 02 2011

Programs

  • Maple
    nmax:=13: mmax:=nmax:
    A164555:=proc(n): if n=1 then 1 else numer(bernoulli(n)) fi: end:
    A027642:=proc(n): if n=1 then 2 else denom(bernoulli(n)) fi: end:
    for m from 0 to 2*mmax do T(0,m):=A164555(m)/A027642(m) od:
    for n from 1 to nmax do for m from 0 to 2*mmax do T(n,m):=T(n-1,m+1)-T(n-1,m) od: od:
    seq(T(n,n+1),n=0..nmax):
    for n from 0 to nmax do ASPEC(n,0):=2: for m from 1 to mmax do ASPEC(n,m):= (2*n+m)*binomial(n+m-1,m-1)/m od: od:
    for n from 0 to nmax do seq(ASPEC(n,m),m=0..mmax) od:
    for n from 0 to nmax do for m from 0 to 2*mmax do SBD(n,m):=0 od: od:
    for m from 0 to mmax do for n from 2*m to nmax do SBD(n,m):= T(m,m+1) od: od:
    for n from 0 to nmax do seq(SBD(n,m), m= 0..mmax/2) od:
    for n from 0 to nmax do BSPEC(n,2) := SBD(n,2)*ASPEC(2,n-4) od:
    for m from 0 to mmax do for n from 0 to nmax do BSPEC(n,m) := SBD(n,m)*ASPEC(m,n-2*m) od: od:
    for n from 0 to nmax do seq(BSPEC(n,m), m=0..mmax/2) od:
    seq(add(BSPEC(n, k), k=0..floor(n/2)) ,n=0..nmax):
    Tx:=0:
    for n from 0 to nmax do for m from 0 to floor(n/2) do a(Tx):= denom(BSPEC(n,m)): Tx:=Tx+1: od: od:
    seq(a(n),n=0..Tx-1); # Johannes W. Meijer, Jul 02 2011
  • Mathematica
    (* a=ASPEC, b=BSPEC *) nmax = 13; a[n_, 0] = 2; a[n_, m_] := (2n+m)*Binomial[n+m-1, m-1]/m; b[n_] := BernoulliB[n]; b[1]=1/2; bb = Table[b[n], {n, 0, nmax}]; diff = Table[ Differences[bb, n], {n, 1, nmax}]; dd = Diagonal[diff]; sbd[n_, m_] := If[n >= 2m, -dd[[m+1]], 0]; b[n_, m_] := sbd[n, m]*a[m, n-2m]; Table[b[n, m], {n, 0, nmax}, {m, 0, Floor[n/2]}] // Flatten // Denominator (* Jean-François Alcover_, Aug 09 2012 *)

Formula

ASPEC(n, 0) = 2 and ASPEC(n, m) = (2*n+m)*binomial(n+m-1, m-1)/m, n >= 0, m >= 1.
ASPEC(n, m) = ASPEC(n-1, m) + ASPEC(n, m-1), n >= 1, m >= 1, with ASPEC(n, 0) = 2, n >= 0, and ASPEC(0,m) = 1, m >= 1.
SBD(n, m) = T(m, m+1), n >= 2*m; see A190339 for the definition of the T(n, m).
BSPEC(n, m) = SBD(n, m)*ASPEC(m, n-2*m)
Sum_{k=0..floor(n/2)} BSPEC(n, k) = A164555(n)/A027642(n).

Extensions

Edited, Maple program and crossrefs added by Johannes W. Meijer, Jul 02 2011

A238800 Unreduced numerators in triangle that leads to the Euler numbers A198631(n)/A006519(n+1).

Original entry on oeis.org

1, 1, 1, -2, 1, -3, 1, -4, 2, 1, -5, 5, 1, -6, 9, -10, 1, -7, 14, -35, 1, -8, 20, -80, 26, 1, -9, 27, -150, 117, 1, -10, 35, -250, 325, -454, 1, -11, 44, -385, 715, -2497, 1, -12, 54, -560, 1365, -8172, 5914, 1, -13
Offset: 0

Views

Author

Paul Curtz, Mar 05 2014

Keywords

Comments

We use the array ASPEC mentioned in A191302:
2, 1, 1, 1, 1, 1, 1, 1,...
2, 3, 4, 5, 6, 7, 8, 9,...
2, 5, 9, 14, 20, 27, 35, 44,...
2, 7, 16, 30, 50, 77, 112, 156,...
with the first upper diagonal of the difference table of the autosequence A198631(n)/A006519(n+1), i.e., 1/2, -1/4, 1/4, -5/8, 13/4, -227/8, 2957/8,...
written by columns:
1/2
1/2,
1/2, -1/4,
1/2, -1/4,
1/2, -1/4, 1/4,
1/2, -1/4, 1/4,
1/2, -1/4, 1/4, -5/8,
1/2, -1/4, 1/4, -5/8,
etc.
Hence, by multiplication of this double triangle by ASPEC, the beginning of the double triangle ESPEC is obtained:
E(0) = 1 = 1
E(1) = 1/2 = 1/2
E(2) = 0 = 1/2 -2/4
E(3) = -1/4 = 1/2 -3/4
E(4) = 0 = 1/2 -4/4 +2/4
E(5) = 1/2 = 1/2 -5/4 +5/4
E(6) = 0 = 1/2 -6/4 +9/4 -10/8
E(7) = -17/8 = 1/2 -7/4 +14/4 -35/8
E(8) = 0 = 1/2 -8/4 +20/4 -80/8 +26/4.
The terms of the sequence are the reduced numerators. Like A192456(n) for Bernoulli numbers A164555(n)/A027642(n).

Examples

			a(n) by triangle
1,
1,
1, -2,
1, -3,
1, -4,  2,
1, -5,  5,
1, -6,  9, -10,
1, -7, 14, -35,
1, -8, 20, -80, 26,
etc.
		

A182397 Numerators in triangle that leads to the (first) Bernoulli numbers A027641/A027642.

Original entry on oeis.org

1, 1, -3, 1, -5, 5, 1, -7, 25, -5, 1, -9, 23, -35, 49, 1, -11, 73, -27, 112, -49, 1, -13, 53, -77, 629, -91, 58, 1, -15, 145, -130, 1399, -451, 753, -58, 1, -17, 95, -135, 2699, -2301, 8573, -869, 341, 1, -19, 241
Offset: 0

Views

Author

Paul Curtz, Apr 27 2012

Keywords

Comments

In A190339 we saw that (the second Bernoulli numbers) A164555/A027642 is an eigensequence (its inverse binomial transform is the sequence signed) of the second kind, see A192456/A191302. We consider this array preceded by 1 for the second row, by 1, -3/2, for the third one; 1 is chosen and is followed by the differences of successive rows.
Hence
1 1/2 1/6 0
1 -1/2 -1/3 -1/6 -1/30
1 -3/2 1/6 1/6 2/15 1/15
1 -5/2 5/3 0 -1/30 -1/15 -8/105.
The second row is A051716/A051717.
The (reduced) triangle before the square array (T(n,m) in A190339) is a(n)/b(n)=
B(0)= 1 = 1 Redbernou1li
B(1)= -1/2 = 1 -3/2
B(2)= 1/6 = 1 -5/2 5/3
B(3)= 0 = 1 -7/2 25/6 -5/3
B(4)=-1/30 = 1 -9/2 23/3 -35/6 49/30
B(5)= 0 = 1 -11/2 73/6 -27/2 112/15 -49/30.
For the main diagonal, see A165142.
Denominator b(n) will be submitted.
This transform is valuable for every eigensequence of the second kind. For instance Leibniz's 1/n (A003506).
With increasing exponents for coefficients, polynomials CB(n,x) create Redbernou1li. See the formula.
Triangle Bernou1li for A027641/A027642 with the same denominator A080326 for every column is
1
1 -3/2
1 -5/2 10/6
1 -7/2 25/6 -10/6
1 -9/2 46/6 -35/6 49/30
1 -11/2 73/6 -81/6 224/30 -49/30.
For numerator by columns,see A000012, -A144396, A100536, Q(n)=n*(2*n^2+9*n+9)/2 , new.
Triangle Checkbernou1 with the same denominator A080326 for every row is
1/1
(2 -3)/2
(6 -15 +10)/6
(6 -21 +25 -10)/6
(30 -135 +230 -175 +49)/30
(30 -165 +365 -405 +224 -49)/30;
Hence for numerator: 1, 2-3, 16-15, 31-31, 309-310, 619-619, 8171-8166.
Absolute sum: 1, 5, 31, 62, 619, 1238, 17337. Reduced division by A080326:
1, 5/2, 31/6, 31/3, 619/30, 619/15, 5779/70, = A172030(n+1)/A172031(n+1).

Crossrefs

Cf. A028246 (Worpitzky), A085737/A085738 (Conway-Sloane), A051714/A051715 (Akiyama-Tanigawa), A192456/A191302 for other triangles that lead to the Bernoulli numbers.

Formula

CB(0,x) = 1,
CB(1,x) = 1 - 3*x/2,
CB(n,x) = (1-x)*CB(n-1,x) + B(n)*x^n , n > 1.

A224964 Irregular triangle of the denominators of the unreduced fractions that lead to the second Bernoulli numbers.

Original entry on oeis.org

2, 2, 2, 6, 2, 6, 2, 6, 15, 2, 6, 15, 2, 6, 15, 105, 2, 6, 15, 105, 2, 6, 15, 105, 105, 2, 6, 15, 105, 105, 2, 6, 15, 105, 105, 231, 2, 6, 15, 105, 105, 231, 2, 6, 15, 105, 105, 231, 15015, 2, 6, 15, 105, 105, 231, 15015
Offset: 0

Views

Author

Paul Curtz, Apr 21 2013

Keywords

Comments

The triangle of fractions A192456(n)/A191302(n) leading to the second Bernoulli numbers written in A191302(n) is the reduced case. The unreduced case is
B(0) = 1 = 2/2 (1 or 2/2 chosen arbitrarily)
B(1) = 1/2
B(2) = 1/6 = 1/2 - 2/6
B(3) = 0 = 1/2 - 3/6
B(4) = -1/30 = 1/2 - 4/6 + 2/15
B(5) = 0 = 1/2 - 5/6 + 5/15
B(6) = 1/42 = 1/2 - 6/6 + 9/15 - 8/105
B(7) = 0 = 1/2 - 7/6 + 14/15 - 28/105
B(8) = -1/30 = 1/2 - 8/6 + 20/15 - 64/105 + 8/105.
The constant values along the columns of denominators are A190339(n).
With B(0)=1, B(2) = 1/2 -1/3, (reduced case), the last fraction of the B(2*n) is
1, -1/3, 2/15, -8/105, 8/105, ... = A212196(n)/A181131(n).
We can continue this method of sum of fractions yielding Bernoulli numbers.
Starting from 1/6 for B(2*n+2), we have:
B(2) = 1/6
B(4) = 1/6 - 3/15
B(6) = 1/6 - 5/15 + 20/105
B(8) = 1/6 - 7/15 + 56/105 - 28/105.
With the odd indices from 3, all these B(n) are the Bernoulli twin numbers -A051716(n+3)/A051717(n+3).

Examples

			Triangle begins
  2;
  2;
  2, 6;
  2, 6;
  2, 6, 15;
  2, 6, 15;
  2, 6, 15, 105;
  2, 6, 15, 105;
  2, 6, 15, 105, 105;
  2, 6, 15, 105, 105;
  2, 6, 15, 105, 105, 231;
  2, 6, 15, 105, 105, 231;
  2, 6, 15, 105, 105, 231, 15015;
  2, 6, 15, 105, 105, 231, 15015;
		

Crossrefs

Programs

  • Mathematica
    nmax = 7; b[n_] := BernoulliB[n]; b[1] = 1/2; bb = Table[b[n], {n, 0, 2*nmax-1}]; diff = Table[ Differences[bb, n], {n, 1, nmax}]; A190339 = diff // Diagonal // Denominator; Table[ Table[ Take[ A190339, n], {2}], {n, 1, nmax}] // Flatten (* Jean-François Alcover, Apr 25 2013 *)

Formula

T(n,k) = A190339(k).
Showing 1-5 of 5 results.