cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 25 results. Next

A224911 Greatest prime dividing A190339(n).

Original entry on oeis.org

2, 3, 5, 7, 7, 11, 13, 13, 17, 19, 19, 23, 23, 23, 29, 31, 31, 31, 37, 37, 41, 43, 43, 47, 47, 47, 53, 53, 53, 59, 61, 61, 61, 67, 67, 71, 73, 73, 73, 79, 79, 83, 83, 83, 89, 89, 89, 89, 97, 97, 101, 103, 103, 107, 109, 109, 113, 113, 113, 113, 113, 113, 113, 127, 127, 131, 131
Offset: 0

Views

Author

Paul Curtz, Apr 19 2013

Keywords

Comments

It appears that a(n) = A060308(n+1), verified for n <=420. - R. J. Mathar, Apr 28 2013
This appears to be a sequence of nondecreasing primes containing each prime at least once.
We might also consider a sequence b(n) defined by 2 followed by A006094(n): 2, 6, 15, 35, 77, 143, 221, ... . A190339(n) is also divisible by a stuttered version of b(n), namely by the sequence 2, 6, 15, 35, 35, 77, 143, 143, ... .

Examples

			a(0) = 6/2 = 3, a(1) = 15/3 = 5, a(2) = 105/15 = 7, a(3) = 105/15 = 7, a(4) = 231/21 = 11.
		

Crossrefs

Programs

  • Maple
    A224911 := proc(n)
        A006530(A190339(n)) ;
    end proc: # R. J. Mathar, Apr 25 2013
  • Mathematica
    nmax = 67; b[n_] := BernoulliB[n]; b[1] = 1/2; bb = Table[b[n], {n, 0, 2*nmax-1}]; diff = Table[Differences[bb, n], {n, 1, nmax}]; FactorInteger[#][[-1, 1]]& /@ Denominator[Diagonal[diff]] (* Jean-François Alcover, Mar 03 2014 *)

Formula

a(n) = A006530(A190339(n)).

A238691 a(n) = A190339(n)/A224911(n).

Original entry on oeis.org

1, 2, 3, 15, 15, 21, 1155, 165, 2145, 51051, 255255, 440895, 440895, 969, 111435, 248834355, 248834355, 2927463, 5898837945, 44352165, 1641030105, 8563193457, 42815967285, 80047243185, 1360803134145, 32898537309, 7731156267615, 1028243783592795, 1028243783592795, 375840831244263
Offset: 0

Views

Author

Paul Curtz, Mar 03 2014

Keywords

Comments

Are non-repeated terms of A224911(n) (2,3,5,11,17,...) A124588(n+1)?
Are repeated terms of A224911(n) (7,13,19,23,31,37,...) A049591(n+1)? At that sequence, Benoit Cloitre mentions a link to the Bernoulli numbers.
Greatest primes dividing a(n): 1, 2, 3, 5, 5, 7, 11, 11, 13, 17, 17, 19, 19, 19, 23, 29, 29, 29, ... = b(n). It appears that b(n) is A224911(n) with A008578(n), ancient primes, instead of A000040(n).
Hence c(n) = 2, 6, 15, 35, ... = 2, followed by A006094(n+1).

Examples

			a(0)=2/2=1, a(1)=6/3=2, a(2)=15/5=3, a(3)=a(4)=105/7=15, ... .
		

Crossrefs

Cf. A060308.

Programs

  • Mathematica
    nmax = 40; b[n_] := BernoulliB[n]; b[1] = 1/2; bb = Table[b[n], {n, 0, 2*nmax-1}]; diff = Table[Differences[bb, n], {n, 1, nmax}]; (#/FactorInteger[#][[-1, 1]])& /@ Denominator[Diagonal[diff]]

Extensions

a(16)-a(25) from Jean-François Alcover, Mar 03 2014

A027641 Numerator of Bernoulli number B_n.

Original entry on oeis.org

1, -1, 1, 0, -1, 0, 1, 0, -1, 0, 5, 0, -691, 0, 7, 0, -3617, 0, 43867, 0, -174611, 0, 854513, 0, -236364091, 0, 8553103, 0, -23749461029, 0, 8615841276005, 0, -7709321041217, 0, 2577687858367, 0, -26315271553053477373, 0, 2929993913841559, 0, -261082718496449122051
Offset: 0

Views

Author

Keywords

Comments

a(n)/A027642(n) (Bernoulli numbers) provide the a-sequence for the Sheffer matrix A094816 (coefficients of orthogonal Poisson-Charlier polynomials). See the W. Lang link under A006232 for a- and z-sequences for Sheffer matrices. The corresponding z-sequence is given by the rationals A130189(n)/A130190(n).
Harvey (2008) describes a new algorithm for computing Bernoulli numbers. His method is to compute B(k) modulo p for many small primes p and then reconstruct B(k) via the Chinese Remainder Theorem. The time complexity is O(k^2 log(k)^(2+eps)). The algorithm is especially well-suited to parallelization. - Jonathan Vos Post, Jul 09 2008
Regard the Bernoulli numbers as forming a vector = B_n, and the variant starting (1, 1/2, 1/6, 0, -1/30, ...), (i.e., the first 1/2 has sign +) as forming a vector Bv_n. The relationship between the Pascal triangle matrix, B_n, and Bv_n is as follows: The binomial transform of B_n = Bv_n. B_n is unchanged when multiplied by the Pascal matrix with rows signed (+-+-, ...), i.e., (1; -1,-1; 1,2,1; ...). Bv_n is unchanged when multiplied by the Pascal matrix with columns signed (+-+-, ...), i.e., (1; 1,-1; 1,-2,1; 1,-3,3,-1; ...). - Gary W. Adamson, Jun 29 2012
The sequence of the Bernoulli numbers B_n = a(n)/A027642(n) is the inverse binomial transform of the sequence {A164555(n)/A027642(n)}, illustrated by the fact that they appear as top row and left column in A190339. - Paul Curtz, May 13 2016
Named by de Moivre (1773; "the numbers of Mr. James Bernoulli") after the Swiss mathematician Jacob Bernoulli (1655-1705). - Amiram Eldar, Oct 02 2023

Examples

			B_n sequence begins 1, -1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0, 5/66, 0, -691/2730, 0, 7/6, 0, -3617/510, ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 810.
  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 49.
  • Harold T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 230.
  • Harold M. Edwards, Riemann's Zeta Function, Academic Press, NY, 1974; see p. 11.
  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.6.1.
  • Herman H. Goldstine, A History of Numerical Analysis, Springer-Verlag, 1977; Section 2.6.
  • L. M. Milne-Thompson, Calculus of Finite Differences, 1951, p. 137.
  • Hans Rademacher, Topics in Analytic Number Theory, Springer, 1973, Chap. 1.

Crossrefs

This is the main entry for the Bernoulli numbers and has all the references, links and formulas. Sequences A027642 (the denominators of B_n) and A000367/A002445 = B_{2n} are also important!
A refinement is A194587.

Programs

  • Magma
    [Numerator(Bernoulli(n)): n in [0..40]]; // Vincenzo Librandi, Mar 17 2014
    
  • Maple
    B := n -> add((-1)^m*m!*Stirling2(n, m)/(m+1), m=0..n);
    B := n -> bernoulli(n);
    seq(numer(bernoulli(n)), n=0..40); # Zerinvary Lajos, Apr 08 2009
  • Mathematica
    Table[ Numerator[ BernoulliB[ n]], {n, 0, 40}] (* Robert G. Wilson v, Oct 11 2004 *)
    Numerator[ Range[0, 40]! CoefficientList[ Series[x/(E^x - 1), {x, 0, 40}], x]]
    Numerator[CoefficientList[Series[PolyGamma[1, 1/x]/x - x, {x, 0, 40}, Assumptions -> x > 0], x]] (* Vladimir Reshetnikov, Apr 24 2013 *)
  • Maxima
    B(n):=(-1)^((n))*sum((stirling1(n,k)*stirling2(n+k,n))/binomial(n+k,k),k,0,n);
    makelist(num(B(n)),n,0,20); /* Vladimir Kruchinin, Mar 16 2013 */
    
  • PARI
    a(n)=numerator(bernfrac(n))
    
  • Python
    from sympy import bernoulli
    from fractions import Fraction
    [bernoulli(i).as_numer_denom()[0] for i in range(51)]  # Indranil Ghosh, Mar 18 2017
    
  • Python
    from sympy import bernoulli
    def A027641(n): return bernoulli(n).p
    print([A027641(n) for n in range(80)])  # M. F. Hasler, Jun 11 2019
  • SageMath
    [bernoulli(n).numerator() for n in range(41)]  # Peter Luschny, Feb 19 2016
    
  • SageMath
    # Alternatively:
    def A027641_list(len):
        f, R, C = 1, [1], [1]+[0]*(len-1)
        for n in (1..len-1):
            f *= n
            for k in range(n, 0, -1):
                C[k] = C[k-1] / (k+1)
            C[0] = -sum(C[k] for k in (1..n))
            R.append((C[0]*f).numerator())
        return R
    A027641_list(41)  # Peter Luschny, Feb 20 2016
    

Formula

E.g.f: x/(exp(x) - 1); take numerators.
Recurrence: B^n = (1+B)^n, n >= 2 (interpreting B^j as B_j).
B_{2n}/(2n)! = 2*(-1)^(n-1)*(2*Pi)^(-2n) Sum_{k>=1} 1/k^(2n) (gives asymptotics) - Rademacher, p. 16, Eq. (9.1). In particular, B_{2*n} ~ (-1)^(n-1)*2*(2*n)!/(2*Pi)^(2*n).
Sum_{i=1..n-1} i^k = ((n+B)^(k+1)-B^(k+1))/(k+1) (interpreting B^j as B_j).
B_{n-1} = - Sum_{r=1..n} (-1)^r binomial(n, r) r^(-1) Sum_{k=1..r} k^(n-1). More concisely, B_n = 1 - (1-C)^(n+1), where C^r is replaced by the arithmetic mean of the first r n-th powers of natural numbers in the expansion of the right-hand side. [Bergmann]
Sum_{i>=1} 1/i^(2k) = zeta(2k) = (2*Pi)^(2k)*|B_{2k}|/(2*(2k)!).
B_{2n} = (-1)^(m-1)/2^(2m+1) * Integral{-inf..inf, [d^(m-1)/dx^(m-1) sech(x)^2 ]^2 dx} (see Grosset/Veselov).
Let B(s,z) = -2^(1-s)(i/Pi)^s s! PolyLog(s,exp(-2*i*Pi/z)). Then B(2n,1) = B_{2n} for n >= 1. Similarly the numbers B(2n+1,1), which might be called Co-Bernoulli numbers, can be considered, and it is remarkable that Leonhard Euler in 1755 already calculated B(3,1) and B(5,1) (Opera Omnia, Ser. 1, Vol. 10, p. 351). (Cf. the Luschny reference for a discussion.) - Peter Luschny, May 02 2009
The B_n sequence is the left column of the inverse of triangle A074909, the "beheaded" Pascal's triangle. - Gary W. Adamson, Mar 05 2012
From Sergei N. Gladkovskii, Dec 04 2012: (Start)
E.g.f. E(x)= 2 - x/(tan(x) + sec(x) - 1)= Sum_{n>=0} a(n)*x^n/n!, a(n)=|B(n)|, where B(n) is Bernoulli number B_n.
E(x)= 2 + x - B(0), where B(k)= 4*k+1 + x/(2 + x/(4*k+3 - x/(2 - x/B(k+1)))); (continued fraction, 4-step). (End)
E.g.f.: x/(exp(x)-1)= U(0); U(k)= 2*k+1 - x(2*k+1)/(x + (2*k+2)/(1 + x/U(k+1))); (continued fraction). - Sergei N. Gladkovskii, Dec 05 2012
E.g.f.: 2*(x-1)/(x*Q(0)-2) where Q(k) = 1 + 2*x*(k+1)/((2*k+1)*(2*k+3) - x*(2*k+1)*(2*k+3)^2/(x*(2*k+3) + 4*(k+1)*(k+2)/Q(k+1))); (recursively defined continued fraction). - Sergei N. Gladkovskii, Feb 26 2013
a(n) = numerator(B(n)), B(n) = (-1)^n*Sum_{k=0..n} Stirling1(n,k) * Stirling2(n+k,n) / binomial(n+k,k). - Vladimir Kruchinin, Mar 16 2013
E.g.f.: x/(exp(x)-1) = E(0) where E(k) = 2*k+1 - x/(2 + x/E(k+1)); (continued fraction). - Sergei N. Gladkovskii, Mar 16 2013
G.f. for Bernoulli(n) = a(n)/A027642(n): psi_1(1/x)/x - x, where psi_n(z) is the polygamma function, psi_n(z) = (d/dz)^(n+1) log(Gamma(z)). - Vladimir Reshetnikov, Apr 24 2013
E.g.f.: 2*E(0) - 2*x, where E(k)= x + (k+1)/(1 + 1/(1 - x/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 10 2013
B_n = Sum_{m=0..n} (-1)^m *A131689(n, m)/(m + 1), n >= 0. See one of the Maple programs. - Wolfdieter Lang, May 05 2017
a(n) = numerator((-1)^n*A155585(n-1)*n/(4^n-2^n)), for n>=1. - Mats Granvik, Nov 26 2017
From Artur Jasinski, Dec 30 2020: (Start)
a(n) = numerator(-2*cos(Pi*n/2)*Gamma(n+1)*zeta(n)/(2*Pi)^n), for n=0 and n>1.
a(n) = numerator(-n*zeta(1-n)), for n=0 and n>1. (End)
a(n) = numerator(Sum_{k=0..n-1} (-1)^(k-1)*k!*Stirling2(n-1,k) / ((k+1)*(k+2))), for n>0 (see Jha link). - Bill McEachen, Jul 17 2025

A191302 Denominators in triangle that leads to the Bernoulli numbers.

Original entry on oeis.org

1, 2, 2, 3, 2, 2, 2, 3, 15, 2, 6, 3, 2, 1, 5, 105, 2, 6, 15, 15, 2, 3, 3, 105, 105, 2, 2, 5, 7, 35, 2, 3, 3, 21, 21, 231, 2, 6, 15, 15, 21, 21, 2, 1, 5, 15, 1, 77, 15015, 2, 6, 3, 35, 15, 33, 1155
Offset: 0

Views

Author

Paul Curtz, May 30 2011

Keywords

Comments

For the definition of the ASPEC array coefficients see the formulas; see also A029635 (Lucas triangle), A097207 and A191662 (k-dimensional square pyramidal numbers).
The antidiagonal row sums of the ASPEC array equal A042950(n) and A098011(n+3).
The coefficients of the T(n,m) array are defined in A190339. We define the coefficients of the SBD array with the aid of the T(n,n+1), see the formulas and the examples.
Multiplication of the coefficients in the rows of the ASPEC array with the coefficients in the columns of the SBD array leads to the coefficients of the BSPEC triangle, see the formulas. The BSPEC triangle can be looked upon as a spectrum for the Bernoulli numbers.
The row sums of the BSPEC triangle give the Bernoulli numbers A164555(n)/A027642(n).
For the numerators of the BSPEC triangle coefficients see A192456.

Examples

			The first few rows of the array ASPEC array:
  2, 1,  1,  1,   1,   1,    1,
  2, 3,  4,  5,   6,   7,    8,
  2, 5,  9, 14,  20,  27,   35,
  2, 7, 16, 30,  50,  77,  112,
  2, 9, 25, 55, 105, 182,  294,
The first few T(n,n+1) = T(n,n)/2 coefficients:
1/2, -1/6, 1/15, -4/105, 4/105, -16/231, 3056/15015, ...
The first few rows of the SBD array:
  1/2,   0,   0,     0
  1/2,   0,   0,     0
  1/2, -1/6,  0,     0
  1/2, -1/6,  0,     0
  1/2, -1/6, 1/15,   0
  1/2, -1/6, 1/15,   0
  1/2, -1/6, 1/15, -4/105
  1/2, -1/6, 1/15, -4/105
The first few rows of the BSPEC triangle:
  B(0) =   1   = 1/1
  B(1) =  1/2  = 1/2
  B(2) =  1/6  = 1/2 - 1/3
  B(3) =   0   = 1/2 - 1/2
  B(4) = -1/30 = 1/2 - 2/3 +  2/15
  B(5) =   0   = 1/2 - 5/6 +  1/3
  B(6) =  1/42 = 1/2 - 1/1 +  3/5  - 8/105
  B(7) =   0   = 1/2 - 7/6 + 14/15 - 4/15
		

Crossrefs

Cf. A028246 (Worpitzky), A085737/A085738 (Conway-Sloane) and A051714/A051715 (Akiyama-Tanigawa) for other triangles that lead to the Bernoulli numbers. - Johannes W. Meijer, Jul 02 2011

Programs

  • Maple
    nmax:=13: mmax:=nmax:
    A164555:=proc(n): if n=1 then 1 else numer(bernoulli(n)) fi: end:
    A027642:=proc(n): if n=1 then 2 else denom(bernoulli(n)) fi: end:
    for m from 0 to 2*mmax do T(0,m):=A164555(m)/A027642(m) od:
    for n from 1 to nmax do for m from 0 to 2*mmax do T(n,m):=T(n-1,m+1)-T(n-1,m) od: od:
    seq(T(n,n+1),n=0..nmax):
    for n from 0 to nmax do ASPEC(n,0):=2: for m from 1 to mmax do ASPEC(n,m):= (2*n+m)*binomial(n+m-1,m-1)/m od: od:
    for n from 0 to nmax do seq(ASPEC(n,m),m=0..mmax) od:
    for n from 0 to nmax do for m from 0 to 2*mmax do SBD(n,m):=0 od: od:
    for m from 0 to mmax do for n from 2*m to nmax do SBD(n,m):= T(m,m+1) od: od:
    for n from 0 to nmax do seq(SBD(n,m), m= 0..mmax/2) od:
    for n from 0 to nmax do BSPEC(n,2) := SBD(n,2)*ASPEC(2,n-4) od:
    for m from 0 to mmax do for n from 0 to nmax do BSPEC(n,m) := SBD(n,m)*ASPEC(m,n-2*m) od: od:
    for n from 0 to nmax do seq(BSPEC(n,m), m=0..mmax/2) od:
    seq(add(BSPEC(n, k), k=0..floor(n/2)) ,n=0..nmax):
    Tx:=0:
    for n from 0 to nmax do for m from 0 to floor(n/2) do a(Tx):= denom(BSPEC(n,m)): Tx:=Tx+1: od: od:
    seq(a(n),n=0..Tx-1); # Johannes W. Meijer, Jul 02 2011
  • Mathematica
    (* a=ASPEC, b=BSPEC *) nmax = 13; a[n_, 0] = 2; a[n_, m_] := (2n+m)*Binomial[n+m-1, m-1]/m; b[n_] := BernoulliB[n]; b[1]=1/2; bb = Table[b[n], {n, 0, nmax}]; diff = Table[ Differences[bb, n], {n, 1, nmax}]; dd = Diagonal[diff]; sbd[n_, m_] := If[n >= 2m, -dd[[m+1]], 0]; b[n_, m_] := sbd[n, m]*a[m, n-2m]; Table[b[n, m], {n, 0, nmax}, {m, 0, Floor[n/2]}] // Flatten // Denominator (* Jean-François Alcover_, Aug 09 2012 *)

Formula

ASPEC(n, 0) = 2 and ASPEC(n, m) = (2*n+m)*binomial(n+m-1, m-1)/m, n >= 0, m >= 1.
ASPEC(n, m) = ASPEC(n-1, m) + ASPEC(n, m-1), n >= 1, m >= 1, with ASPEC(n, 0) = 2, n >= 0, and ASPEC(0,m) = 1, m >= 1.
SBD(n, m) = T(m, m+1), n >= 2*m; see A190339 for the definition of the T(n, m).
BSPEC(n, m) = SBD(n, m)*ASPEC(m, n-2*m)
Sum_{k=0..floor(n/2)} BSPEC(n, k) = A164555(n)/A027642(n).

Extensions

Edited, Maple program and crossrefs added by Johannes W. Meijer, Jul 02 2011

A168426 Square array of denominators of a truncated array of Bernoulli twin numbers (A168516), read by antidiagonals.

Original entry on oeis.org

3, 6, 6, 30, 15, 30, 30, 15, 15, 30, 42, 105, 105, 105, 42, 42, 21, 105, 105, 21, 42, 30, 105, 105, 105, 105, 105, 30, 30, 15, 105, 105, 105, 105, 15, 30, 66, 165, 165, 1155, 231, 1155, 165, 165, 66, 66, 33, 165, 165, 231, 231, 165, 165, 33, 66, 2730, 15015, 15015, 15015, 15015, 15015, 15015, 15015
Offset: 0

Views

Author

Paul Curtz, Nov 25 2009

Keywords

Comments

Entries are multiples of 3.
The sequence of fractions A051716()/A051717() is a sequence of first differences of A164555()/A027642().
It can be observed (see the difference array in A190339) that A168516/A168426 is a sequence of autosequences of the second kind. - Paul Curtz, Dec 21 2016

Crossrefs

Programs

  • Mathematica
    max = 11; c[0] = 1; c[n_?EvenQ] := BernoulliB[n] + BernoulliB[n-1]; c[n_?OddQ] := -BernoulliB[n] - BernoulliB[n-1]; cc = Table[c[n], {n, 0, max+1}]; diff = Drop[#, 2]& /@ Table[ Differences[cc, n], {n, 0, max-1}]; Flatten[ Table[ diff[[n-k+1, k]], {n, 1, max}, {k, 1, n}]] // Denominator (* Jean-François Alcover, Aug 09 2012 *)

Extensions

More terms from R. J. Mathar, Jul 10 2011

A191754 Numerators of a companion to the Bernoulli numbers.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 41, 41, -589, -589, 8317, 8317, -869807, -869807, 43056421, 43056421, -250158593, -250158593, 67632514765, 67632514765, -1581439548217, -1581439548217
Offset: 0

Views

Author

Paul Curtz, Jun 15 2011

Keywords

Comments

The companion to the Bernoulli numbers BC(0, m) = A191754(m)/A192366(m) is, just like the Bernoulli numbers T(0, m) = A164555(m)/A027642(m), see A190339 for the T(n, m), an autosequence of the second kind, i.e., its inverse binomial transform is the sequence signed.
In order to construct the companion array BC(n, m) we use the following rules: the main diagonal BC(n, n) = 0, the first upper diagonal BC(n, n+1) = T(n, n+1) and recurrence relation BC(n, m) = BC(n-1, m+1) - BC(n-1, m). The companion to the Bernoulli numbers appears in the first row of the BC(n, m) array, i.e., BC(0, m) = A191754(m)/A192366(m).
For the denominators of the companion to the Bernoulli numbers see A192366.

Examples

			The first few rows of the BC(n,m) matrix are:
0,        1/2,   1/2,    1/3,    1/6,    1/15,    1/30,
1/2,        0,  -1/6,   -1/6,  -1/10,   -1/30,  -1/210,
-1/2,    -1/6,     0,   1/15,   1/15,    1/35,  -1/105,
1/3,      1/6,  1/15,      0, -4/105,  -4/105,       0,
-1/6,   -1/10, -1/15, -4/105,      0,   4/105,   4/105,
1/15,    1/30,  1/35,  4/105,  4/105,       0, -16/231,
-1/30, -1/210, 1/105,      0, -4/105, -16/231,       0,
		

Crossrefs

Programs

  • Maple
    nmax:=26: mmax:=nmax: A164555:=proc(n): if n=1 then 1 else numer(bernoulli(n)) fi: end: A027642:=proc(n): if n=1 then 2 else denom(bernoulli(n)) fi: end: for m from 0 to 2*mmax do T(0,m):=A164555(m)/A027642(m) od: for n from 1 to nmax do for m from 0 to 2*mmax do T(n,m):= T(n-1,m+1)-T(n-1,m) od: od: for n from 0 to nmax do BC(n,n):=0: BC(n,n+1) := T(n,n+1) od: for m from 2 to 2*mmax do for n from 0 to m-2 do BC(n,m):=BC(n,m-1) + BC(n+1,m-1) od: od: for n from 0 to 2*nmax do BC(n,0):=(-1)^(n+1)*BC(0,n) od: for m from 1 to mmax do for n from 2 to 2*nmax do BC(n,m) := BC(n,m-1) + BC(n+1,m-1) od: od: for n from 0 to nmax do seq(BC(n,m),m=0..mmax) od: seq(BC(0,n),n=0..nmax): seq(numer(BC(0,n)),n=0..nmax); # Johannes W. Meijer, Jul 02 2011
  • Mathematica
    max = 26; b[n_] := BernoulliB[n]; b[1]=1/2; bb = Table[b[n], {n, 0, max}]; diff = Table[ Differences[bb, n], {n, 1, Ceiling[max/2]}]; dd = Diagonal[diff]; bc[n_, n_] = 0; bc[n_, m_] /; m < n := bc[n, m] = bc[n-1, m+1] - bc[n-1, m]; bc[n_, m_] /; m == n+1 := bc[n, m] = -dd[[n+1]]; bc[n_, m_] /; m > n+1 := bc[n, m] = bc[n, m-1] + bc[n+1, m-1]; Table[bc[0, m], {m, 0, max}] // Numerator (* Jean-François Alcover, Aug 08 2012 *)

Formula

a(2*n+2)/a(2*n+1) = A000012(n)
BC(n, n) = 0, BC(n, n+1) = T(n, n+1) = T(n, n)/2 and BC(n, m) = BC(n-1, m+1) - BC(n-1, m); for the T(n, n+1) see A190339.
BC(0, m) = A191754(m)/A192366(m), i.e., the companion to the Bernoulli numbers.
Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*A191754(k)/A192366(k). = (-1)^(n+1)*A191754(n)/ A192366(n).
Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*A164555(k)/A027642(k). = (-1)^n*A164555(n)/A027642(n).
b(n) = A191754(n)/A192366(n) + A164555(n)/A027642(n) = [1, 1, 2/3, 1/3, 2/15, 1/15, 2/35, 1/35, -2/105, -1/105, ...] leads to b(2*n)/b(2*n+1) = 2 for n>1.

Extensions

Edited by Johannes W. Meijer, Jul 02 2011

A239315 Array read by antidiagonals: denominators of the core of the classical Bernoulli numbers.

Original entry on oeis.org

15, 15, 15, 105, 105, 105, 21, 105, 105, 21, 105, 105, 105, 105, 105, 15, 105, 105, 105, 105, 15, 165, 165, 1155, 231, 1155, 165, 165, 33, 165, 165, 231, 231, 165, 165, 33, 15015, 15015, 15015, 15015, 15015, 15015, 15015, 15015, 15015
Offset: 0

Views

Author

Paul Curtz, Mar 15 2014

Keywords

Comments

We consider the autosequence A164555(n)/A027642(n) (see A190339(n)) and its difference table without the first two rows and the first two columns:
2/15, 1/15, -1/105, -1/21, -1/105, 1/15, 7/165, -5/33,...
-1/15, -8/105, -4/105, 4/105, 8/105, -4/165, -32/165,...
-1/105, 4/105, 8/105, 4/105, -116/1155, -28/165,...
1/21, 4/105, -4/105, -32/231, -16/231,...
-1/105, -8/105, -116/1155, 16/231,...
-1/15, -4/165, 28/165,...
7/165, 32/165,...
5/33,... etc.
This is an autosequence of the second kind.
The antidiagonals are palindromes in absolute values.
a(n) are the denominators. Multiples of 3.
Sum of odd antidiagonals: 2/15, -2/21, 2/15, -10/33, 1382/1365,... = -2*A000367(n+2)/A001897(n+2).
The sum of the even antidiagonals is A000004.
2/15, 0, -2/21,... = -4*A027641(n+4)/A027642(n+4) = -4*A164555(n)/A027642(n+4) and others.

Examples

			As a triangle:
15,
15,   15,
105, 105, 105,
21,  105, 105, 21,
105, 105, 105, 105, 105,
etc.
		

Crossrefs

Programs

  • Mathematica
    max = 12; tb = Table[BernoulliB[n], {n, 0, max}]; td = Table[Differences[tb, n][[3 ;; -1]], {n, 2, max - 1}]; Table[td[[n - k + 1, k]] // Denominator, {n, 1, max - 3}, {k, 1, n}] // Flatten (* Jean-François Alcover, Apr 11 2014 *)

A195240 Numerators of the second differences of the sequence of fractions (-1)^(n+1)*A176618(n)/A172031(n).

Original entry on oeis.org

0, 1, 1, 7, 8, 11, 10, 7, 8, 19, 14, 337, 1028, 5, -2, -1681, 1936, 22133, -21734, -87223, 87388, 427291, -427222, -118181363, 118182728, 4276553, -4276550, -11874730297, 11874730732, 4307920641583
Offset: 0

Views

Author

Paul Curtz, Sep 13 2011

Keywords

Comments

The array of (-1)^n*A176328(n)/A176591(n) and its first, second, etc. differences in subsequence rows starts as follows:
0, 1, 2, 19/6, 14/3, 199/30, 137/15, ... (-1)^n * A176328(n)/A176591(n),
1, 1, 7/6, 3/2, 59/30, 5/2, 127/42, ... see A176328,
0, 1/6, 1/3, 7/15, 8/15, 11/21, 10/21, ...
1/6, 1/6, 2/15, 1/15, -1/105, -1/21, -1/105, ... see A190339
0, -1/30, -1/15, -8/105, -4/105, 4/105, -116/1155, ...
The numerators in the 3rd row, 0, 1/6, 1/3, 7/15, 8/15, 11/21, 10/21, 7/15, 8/15, 19/33, 14/33, 337/1365, 1028/1365, 5/3, -2/3, -1681/255, 1936/255, ... define the current sequence.
The associated denominators are 1, 6 and followed by 3, 15, 15 etc as provided in A172087.
The second column of the array, 1, 1, 1/6, 1/6, -1/30, -1/30, ... contains doubled A000367(n)/A002445(n). These are related to A176150, A176144, and A176184.
In the first subdiagonal of the array we see 1, 1/6, 2/15, -8/150, 8/105, -32/321, 6112/15015, -3712/2145 , ... continued as given by A181130 and A181131.

Programs

  • Maple
    read("transforms") ;
    evb := [0, 1, 0, seq(bernoulli(n), n=2..30)] ;
    ievb := BINOMIALi(evb) ;
    [seq((-1)^n*op(n,ievb),n=1..nops(ievb))] ;
    DIFF(%) ;
    DIFF(%) ;
    apply(numer,%) ; # R. J. Mathar, Sep 20 2011
  • Mathematica
    evb = Join[{0, 1, 0}, Table[BernoulliB[n], {n, 2, 32}]]; ievb = Table[ Sum[Binomial[n, k]*evb[[k+1]], {k, 0, n}], {n, 0, Length[evb]-3}]; Differences[ievb, 2] // Numerator (* Jean-François Alcover, Sep 09 2013, after R. J. Mathar *)

Formula

a(2*n+1) + a(2*n+2) = A172087(2*n+2) = A172087(2*n+3), n >= 1.

A235774 Let b(k) = A164555(k)/A027642(k), the sequence of "original" Bernoulli numbers with -1 instead of A164555(0)=1; then a(n) = numerator of the n-th term of the binomial transform of the b(k) sequence.

Original entry on oeis.org

-1, -1, 1, 1, 59, 3, 169, 5, 179, 7, 533, 9, 26609, 11, 79, 13, 3523, 15, 56635, 17, -168671, 19, 857273, 21, -236304031, 23, 8553247, 25, -23749438409, 27, 8615841677021, 29, -7709321025917, 31, 2577687858559, 33, -26315271552988224913
Offset: 0

Views

Author

Paul Curtz, Jan 15 2014

Keywords

Comments

(a(n)/A027642(n)) = -1, -1/2, 1/6, 1, 59/30, 3, 169/42, 5, 179/30, 7, 533/66, 9,.. .
Difference table for a(n)/A027642(n):
-1, -1/2, 1/6, 1, 59/30, 3, 169/42, ...
1/2, 2/3, 5/6, 29/30, 31/30, 43/42, 41/42, ... = A165161(n)/A051717(n+1)
1/6, 1/6, 2/15, 1/15, -1/105, -1/21, -1/105, ... not in the OEIS
0, -1/30, -1/15, -8/105, -4/105, 4/105, 8/105, ... etc.
Compare with the array in A190339.

Crossrefs

Programs

  • Mathematica
    b[0] = -1; b[1] = 1/2; b[n_] := BernoulliB[n]; a[n_] := Sum[Binomial[n, k]*b[k], {k, 0, n}] // Numerator; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jan 30 2014 *)

Formula

(a(n+1) - a(n))/A027642(n) = A165161(n)/A051717(n+1).
(A164558(n) - a(n))/A027642(n) = 2's = A007395.
(a(n) - A164555(n))/A027642(n) = n - 2 = A023444(n).

A239275 a(n) = numerator(2^n * Bernoulli(n, 1)).

Original entry on oeis.org

1, 1, 2, 0, -8, 0, 32, 0, -128, 0, 2560, 0, -1415168, 0, 57344, 0, -118521856, 0, 5749735424, 0, -91546451968, 0, 1792043646976, 0, -1982765704675328, 0, 286994513002496, 0, -3187598700536922112, 0, 4625594563496048066560, 0, -16555640873195841519616, 0, 22142170101965089931264, 0
Offset: 0

Views

Author

Paul Curtz, Mar 13 2014

Keywords

Comments

Difference table of f(n) = 2^n *A164555(n)/A027642(n) = a(n)/A141459(n):
1, 1, 2/3, 0, -8/15, 0, 32/21, 0,...
0, -1/3, -2/3, -8/15, 8/15, 32/21, -32/21,...
-1/3, -1/3, 2/15, 16/15, 104/105, -64/21,...
0, 7/15, 14/15, -8/105, -424/105,...
7/15, 7/15, -106/105, -416/105,...
0, -31/21, -62/31,
-31/21, -31/21,...
0,... etc.
Main diagonal: A212196(n)/A181131(n). See A190339(n).
First upper diagonal: A229023(n)/A181131(n).
The inverse binomial transform of f(n) is g(n). Reciprocally, the inverse binomial transform of g(n) is f(n) with -1 instead of f(1)=1, i.e., f(n) signed.
Sum of the antidiagonals: 1,1,0,-1,0,3,0,-17,... = (-1)^n*A036968(n) = -A226158(n+1).
Following A211163(n+2), f(n) is the coefficients of a polynomial in Pi^n.
Bernoulli numbers, twice, and Genocchi numbers, twice, are linked to Pi.
f(n) - g(n) = -A226158(n).
Also the numerators of the centralized Bernoulli polynomials 2^n*Bernoulli(n, x/2+1/2) evaluated at x=1. The denominators are A141459. - Peter Luschny, Nov 22 2015
(-1)^n*a(n) = 2^n*numerator(A027641(n)/A027642(n)) (that is the present sequence with a(1) = -1 instead of +1). - Wolfdieter Lang, Jul 05 2017

Crossrefs

Cf. A141459 (denominators), A001896/A001897, A027641/A027642.

Programs

  • Maple
    seq(numer(2^n*bernoulli(n, 1)), n=0..35); # Peter Luschny, Jul 17 2017
  • Mathematica
    Table[Numerator[2^n*BernoulliB[n, 1]], {n, 0, 100}] (* Indranil Ghosh, Jul 18 2017 *)
  • Python
    from sympy import bernoulli
    def a(n): return (2**n * bernoulli(n, 1)).numerator
    print([a(n) for n in range(51)]) # Indranil Ghosh, Jul 18 2017

Formula

a(n) = numerators of 2^n * A164555(n)/A027642(n).
Numerators of the binomial transform of A157779(n)/(interleave A001897(n), 1)(conjectured).
Showing 1-10 of 25 results. Next