A224911
Greatest prime dividing A190339(n).
Original entry on oeis.org
2, 3, 5, 7, 7, 11, 13, 13, 17, 19, 19, 23, 23, 23, 29, 31, 31, 31, 37, 37, 41, 43, 43, 47, 47, 47, 53, 53, 53, 59, 61, 61, 61, 67, 67, 71, 73, 73, 73, 79, 79, 83, 83, 83, 89, 89, 89, 89, 97, 97, 101, 103, 103, 107, 109, 109, 113, 113, 113, 113, 113, 113, 113, 127, 127, 131, 131
Offset: 0
a(0) = 6/2 = 3, a(1) = 15/3 = 5, a(2) = 105/15 = 7, a(3) = 105/15 = 7, a(4) = 231/21 = 11.
-
A224911 := proc(n)
A006530(A190339(n)) ;
end proc: # R. J. Mathar, Apr 25 2013
-
nmax = 67; b[n_] := BernoulliB[n]; b[1] = 1/2; bb = Table[b[n], {n, 0, 2*nmax-1}]; diff = Table[Differences[bb, n], {n, 1, nmax}]; FactorInteger[#][[-1, 1]]& /@ Denominator[Diagonal[diff]] (* Jean-François Alcover, Mar 03 2014 *)
Original entry on oeis.org
1, 2, 3, 15, 15, 21, 1155, 165, 2145, 51051, 255255, 440895, 440895, 969, 111435, 248834355, 248834355, 2927463, 5898837945, 44352165, 1641030105, 8563193457, 42815967285, 80047243185, 1360803134145, 32898537309, 7731156267615, 1028243783592795, 1028243783592795, 375840831244263
Offset: 0
a(0)=2/2=1, a(1)=6/3=2, a(2)=15/5=3, a(3)=a(4)=105/7=15, ... .
-
nmax = 40; b[n_] := BernoulliB[n]; b[1] = 1/2; bb = Table[b[n], {n, 0, 2*nmax-1}]; diff = Table[Differences[bb, n], {n, 1, nmax}]; (#/FactorInteger[#][[-1, 1]])& /@ Denominator[Diagonal[diff]]
A027641
Numerator of Bernoulli number B_n.
Original entry on oeis.org
1, -1, 1, 0, -1, 0, 1, 0, -1, 0, 5, 0, -691, 0, 7, 0, -3617, 0, 43867, 0, -174611, 0, 854513, 0, -236364091, 0, 8553103, 0, -23749461029, 0, 8615841276005, 0, -7709321041217, 0, 2577687858367, 0, -26315271553053477373, 0, 2929993913841559, 0, -261082718496449122051
Offset: 0
B_n sequence begins 1, -1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0, 5/66, 0, -691/2730, 0, 7/6, 0, -3617/510, ...
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 810.
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 49.
- Harold T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 230.
- Harold M. Edwards, Riemann's Zeta Function, Academic Press, NY, 1974; see p. 11.
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.6.1.
- Herman H. Goldstine, A History of Numerical Analysis, Springer-Verlag, 1977; Section 2.6.
- L. M. Milne-Thompson, Calculus of Finite Differences, 1951, p. 137.
- Hans Rademacher, Topics in Analytic Number Theory, Springer, 1973, Chap. 1.
- T. D. Noe, Table of n, a(n) for n = 0..200
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- C. M. Bender and K. A. Milton, Continued fraction as a discrete nonlinear transform, arXiv:hep-th/9304052, 1993.
- Beáta Bényi and Péter Hajnal, Poly-Bernoulli Numbers and Eulerian Numbers, arXiv:1804.01868 [math.CO], 2018.
- H. Bergmann, Eine explizite Darstellung der Bernoullischen Zahlen, Math. Nach. 34 (1967), 377-378. Math Rev 36#4030.
- Richard P. Brent and David Harvey, Fast computation of Bernoulli, Tangent and Secant numbers, arXiv preprint arXiv:1108.0286 [math.CO], 2011.
- K.-W. Chen, Algorithms for Bernoulli numbers and Euler numbers, J. Integer Sequences, 4 (2001), #01.1.6.
- W. Y.C. Chen, J. J. F. Guo and L. X. W. Wang, Log-behavior of the Bernoulli Numbers, arXiv:1208.5213 [math.CO], 2012-2013.
- Abraham de Moivre, The Doctrine of Chances, 3rd edition, London, 1733, p. 95.
- K. Dilcher, A Bibliography of Bernoulli Numbers (Alphabetically Indexed Authorwise).
- Bakir Farhi, Formulas Involving Bernoulli and Stirling Numbers of Both Kinds, Journal of Integer Sequences, Vol. 28 (2025), Article 25.2.6. See p. 16.
- Ghislain R. Franssens, On a Number Pyramid Related to the Binomial, Deleham, Eulerian, MacMahon and Stirling number triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.4.1.
- H. W. Gould and J. Quaintance, Bernoulli Numbers and a New Binomial Transform Identity, J. Int. Seq. 17 (2014), Article 14.2.2.
- M.-P. Grosset and A. P. Veselov, Bernoulli numbers and solitons, arXiv:math/0503175 [math.GM], 2005.
- David Harvey, A multimodular algorithm for computing Bernoulli numbers, arXiv:0807.1347 [math.NT], Jul 08 2008.
- A. Iványi, Leader election in synchronous networks, Acta Univ. Sapientiae, Mathematica, 5, 2 (2013) 54-82.
- Sumit Kumar Jha, A new explicit formula for the Bernoulli numbers in terms of the Stirling numbers of the second kind, Notes on Number Theory and Discrete Mathematics (2020) Vol. 26, No. 2, 148-151.
- M. Kaneko, The Akiyama-Tanigawa algorithm for Bernoulli numbers, J. Integer Sequences, 3 (2000), Article 00.2.9.
- Wolfdieter Lang, On Sums of Powers of Arithmetic Progressions, and Generalized Stirling, Eulerian and Bernoulli numbers, arXiv:1707.04451 [math.NT], 2017.
- Guo-Dong Liu, H. M. Srivastava, and Hai-Quing Wang, Some Formulas for a Family of Numbers Analogous to the Higher-Order Bernoulli Numbers, J. Int. Seq. 17 (2014), Article 14.4.6.
- F. Luca and P. Stanica, On some conjectures on the monotonicity of some arithmetical sequences, J. Combin. Number Theory 4 (2012) 1-10.
- Peter Luschny, The Bernoulli Manifesto. A survey on the occasion of the 300th anniversary of the publication of Jacob Bernoulli's Ars Conjectandi, 1713-2013.
- Romeo Meštrović, On a Congruence Modulo n^3 Involving Two Consecutive Sums of Powers, Journal of Integer Sequences, Vol. 17 (2014), Article 14.8.4.
- Hisanori Mishima, Bernoulli numbers (n = 2 to 114), (n = 116 to 154) (Factorizations).
- Ben Moonen, A remark on the paper of Deninger and Murre, arXiv:2407.05837 [math.AG], 2024. See p. 6.
- A. F. Neto, Carlitz's Identity for the Bernoulli Numbers and Zeon Algebra, J. Int. Seq. 18 (2015), Article 15.5.6.
- A. F. Neto, A note of a Theorem of Guo, Mezo, and Qi, J. Int. Seq. 19 (2016) Article 16.4.8.
- Niels Nielsen, Traite Elementaire des Nombres de Bernoulli, Gauthier-Villars, 1923, pp. 398.
- Simon Plouffe, The First 498 Bernoulli numbers. [Project Gutenberg Etext]
- Ed Sandifer, How Euler Did It, Bernoulli numbers.
- N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 5.
- J. Singh, On an Arithmetic Convolution, J. Int. Seq. 17 (2014) Article 14.6.7.
- J. Sondow and E. Tsukerman, The p-adic order of power sums, the Erdos-Moser equation, and Bernoulli numbers, arXiv:1401.0322 [math.NT], 2014; see section 5.
- Eric Weisstein's World of Mathematics, Bernoulli Number.
- Eric Weisstein's World of Mathematics, Polygamma Function.
- Roman Witula, Damian Slota and Edyta Hetmaniok, Bridges between different known integer sequences, Annales Mathematicae et Informaticae, 41 (2013) pp. 255-263.
- Wolfram Research, Generating functions of B_n & B_2n.
- Index entries for "core" sequences.
- Index entries for sequences related to Bernoulli numbers.
This is the main entry for the Bernoulli numbers and has all the references, links and formulas. Sequences
A027642 (the denominators of B_n) and
A000367/
A002445 = B_{2n} are also important!
-
[Numerator(Bernoulli(n)): n in [0..40]]; // Vincenzo Librandi, Mar 17 2014
-
B := n -> add((-1)^m*m!*Stirling2(n, m)/(m+1), m=0..n);
B := n -> bernoulli(n);
seq(numer(bernoulli(n)), n=0..40); # Zerinvary Lajos, Apr 08 2009
-
Table[ Numerator[ BernoulliB[ n]], {n, 0, 40}] (* Robert G. Wilson v, Oct 11 2004 *)
Numerator[ Range[0, 40]! CoefficientList[ Series[x/(E^x - 1), {x, 0, 40}], x]]
Numerator[CoefficientList[Series[PolyGamma[1, 1/x]/x - x, {x, 0, 40}, Assumptions -> x > 0], x]] (* Vladimir Reshetnikov, Apr 24 2013 *)
-
B(n):=(-1)^((n))*sum((stirling1(n,k)*stirling2(n+k,n))/binomial(n+k,k),k,0,n);
makelist(num(B(n)),n,0,20); /* Vladimir Kruchinin, Mar 16 2013 */
-
a(n)=numerator(bernfrac(n))
-
from sympy import bernoulli
from fractions import Fraction
[bernoulli(i).as_numer_denom()[0] for i in range(51)] # Indranil Ghosh, Mar 18 2017
-
from sympy import bernoulli
def A027641(n): return bernoulli(n).p
print([A027641(n) for n in range(80)]) # M. F. Hasler, Jun 11 2019
-
[bernoulli(n).numerator() for n in range(41)] # Peter Luschny, Feb 19 2016
-
# Alternatively:
def A027641_list(len):
f, R, C = 1, [1], [1]+[0]*(len-1)
for n in (1..len-1):
f *= n
for k in range(n, 0, -1):
C[k] = C[k-1] / (k+1)
C[0] = -sum(C[k] for k in (1..n))
R.append((C[0]*f).numerator())
return R
A027641_list(41) # Peter Luschny, Feb 20 2016
A191302
Denominators in triangle that leads to the Bernoulli numbers.
Original entry on oeis.org
1, 2, 2, 3, 2, 2, 2, 3, 15, 2, 6, 3, 2, 1, 5, 105, 2, 6, 15, 15, 2, 3, 3, 105, 105, 2, 2, 5, 7, 35, 2, 3, 3, 21, 21, 231, 2, 6, 15, 15, 21, 21, 2, 1, 5, 15, 1, 77, 15015, 2, 6, 3, 35, 15, 33, 1155
Offset: 0
The first few rows of the array ASPEC array:
2, 1, 1, 1, 1, 1, 1,
2, 3, 4, 5, 6, 7, 8,
2, 5, 9, 14, 20, 27, 35,
2, 7, 16, 30, 50, 77, 112,
2, 9, 25, 55, 105, 182, 294,
The first few T(n,n+1) = T(n,n)/2 coefficients:
1/2, -1/6, 1/15, -4/105, 4/105, -16/231, 3056/15015, ...
The first few rows of the SBD array:
1/2, 0, 0, 0
1/2, 0, 0, 0
1/2, -1/6, 0, 0
1/2, -1/6, 0, 0
1/2, -1/6, 1/15, 0
1/2, -1/6, 1/15, 0
1/2, -1/6, 1/15, -4/105
1/2, -1/6, 1/15, -4/105
The first few rows of the BSPEC triangle:
B(0) = 1 = 1/1
B(1) = 1/2 = 1/2
B(2) = 1/6 = 1/2 - 1/3
B(3) = 0 = 1/2 - 1/2
B(4) = -1/30 = 1/2 - 2/3 + 2/15
B(5) = 0 = 1/2 - 5/6 + 1/3
B(6) = 1/42 = 1/2 - 1/1 + 3/5 - 8/105
B(7) = 0 = 1/2 - 7/6 + 14/15 - 4/15
-
nmax:=13: mmax:=nmax:
A164555:=proc(n): if n=1 then 1 else numer(bernoulli(n)) fi: end:
A027642:=proc(n): if n=1 then 2 else denom(bernoulli(n)) fi: end:
for m from 0 to 2*mmax do T(0,m):=A164555(m)/A027642(m) od:
for n from 1 to nmax do for m from 0 to 2*mmax do T(n,m):=T(n-1,m+1)-T(n-1,m) od: od:
seq(T(n,n+1),n=0..nmax):
for n from 0 to nmax do ASPEC(n,0):=2: for m from 1 to mmax do ASPEC(n,m):= (2*n+m)*binomial(n+m-1,m-1)/m od: od:
for n from 0 to nmax do seq(ASPEC(n,m),m=0..mmax) od:
for n from 0 to nmax do for m from 0 to 2*mmax do SBD(n,m):=0 od: od:
for m from 0 to mmax do for n from 2*m to nmax do SBD(n,m):= T(m,m+1) od: od:
for n from 0 to nmax do seq(SBD(n,m), m= 0..mmax/2) od:
for n from 0 to nmax do BSPEC(n,2) := SBD(n,2)*ASPEC(2,n-4) od:
for m from 0 to mmax do for n from 0 to nmax do BSPEC(n,m) := SBD(n,m)*ASPEC(m,n-2*m) od: od:
for n from 0 to nmax do seq(BSPEC(n,m), m=0..mmax/2) od:
seq(add(BSPEC(n, k), k=0..floor(n/2)) ,n=0..nmax):
Tx:=0:
for n from 0 to nmax do for m from 0 to floor(n/2) do a(Tx):= denom(BSPEC(n,m)): Tx:=Tx+1: od: od:
seq(a(n),n=0..Tx-1); # Johannes W. Meijer, Jul 02 2011
-
(* a=ASPEC, b=BSPEC *) nmax = 13; a[n_, 0] = 2; a[n_, m_] := (2n+m)*Binomial[n+m-1, m-1]/m; b[n_] := BernoulliB[n]; b[1]=1/2; bb = Table[b[n], {n, 0, nmax}]; diff = Table[ Differences[bb, n], {n, 1, nmax}]; dd = Diagonal[diff]; sbd[n_, m_] := If[n >= 2m, -dd[[m+1]], 0]; b[n_, m_] := sbd[n, m]*a[m, n-2m]; Table[b[n, m], {n, 0, nmax}, {m, 0, Floor[n/2]}] // Flatten // Denominator (* Jean-François Alcover_, Aug 09 2012 *)
A168426
Square array of denominators of a truncated array of Bernoulli twin numbers (A168516), read by antidiagonals.
Original entry on oeis.org
3, 6, 6, 30, 15, 30, 30, 15, 15, 30, 42, 105, 105, 105, 42, 42, 21, 105, 105, 21, 42, 30, 105, 105, 105, 105, 105, 30, 30, 15, 105, 105, 105, 105, 15, 30, 66, 165, 165, 1155, 231, 1155, 165, 165, 66, 66, 33, 165, 165, 231, 231, 165, 165, 33, 66, 2730, 15015, 15015, 15015, 15015, 15015, 15015, 15015
Offset: 0
-
max = 11; c[0] = 1; c[n_?EvenQ] := BernoulliB[n] + BernoulliB[n-1]; c[n_?OddQ] := -BernoulliB[n] - BernoulliB[n-1]; cc = Table[c[n], {n, 0, max+1}]; diff = Drop[#, 2]& /@ Table[ Differences[cc, n], {n, 0, max-1}]; Flatten[ Table[ diff[[n-k+1, k]], {n, 1, max}, {k, 1, n}]] // Denominator (* Jean-François Alcover, Aug 09 2012 *)
A191754
Numerators of a companion to the Bernoulli numbers.
Original entry on oeis.org
0, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 41, 41, -589, -589, 8317, 8317, -869807, -869807, 43056421, 43056421, -250158593, -250158593, 67632514765, 67632514765, -1581439548217, -1581439548217
Offset: 0
The first few rows of the BC(n,m) matrix are:
0, 1/2, 1/2, 1/3, 1/6, 1/15, 1/30,
1/2, 0, -1/6, -1/6, -1/10, -1/30, -1/210,
-1/2, -1/6, 0, 1/15, 1/15, 1/35, -1/105,
1/3, 1/6, 1/15, 0, -4/105, -4/105, 0,
-1/6, -1/10, -1/15, -4/105, 0, 4/105, 4/105,
1/15, 1/30, 1/35, 4/105, 4/105, 0, -16/231,
-1/30, -1/210, 1/105, 0, -4/105, -16/231, 0,
-
nmax:=26: mmax:=nmax: A164555:=proc(n): if n=1 then 1 else numer(bernoulli(n)) fi: end: A027642:=proc(n): if n=1 then 2 else denom(bernoulli(n)) fi: end: for m from 0 to 2*mmax do T(0,m):=A164555(m)/A027642(m) od: for n from 1 to nmax do for m from 0 to 2*mmax do T(n,m):= T(n-1,m+1)-T(n-1,m) od: od: for n from 0 to nmax do BC(n,n):=0: BC(n,n+1) := T(n,n+1) od: for m from 2 to 2*mmax do for n from 0 to m-2 do BC(n,m):=BC(n,m-1) + BC(n+1,m-1) od: od: for n from 0 to 2*nmax do BC(n,0):=(-1)^(n+1)*BC(0,n) od: for m from 1 to mmax do for n from 2 to 2*nmax do BC(n,m) := BC(n,m-1) + BC(n+1,m-1) od: od: for n from 0 to nmax do seq(BC(n,m),m=0..mmax) od: seq(BC(0,n),n=0..nmax): seq(numer(BC(0,n)),n=0..nmax); # Johannes W. Meijer, Jul 02 2011
-
max = 26; b[n_] := BernoulliB[n]; b[1]=1/2; bb = Table[b[n], {n, 0, max}]; diff = Table[ Differences[bb, n], {n, 1, Ceiling[max/2]}]; dd = Diagonal[diff]; bc[n_, n_] = 0; bc[n_, m_] /; m < n := bc[n, m] = bc[n-1, m+1] - bc[n-1, m]; bc[n_, m_] /; m == n+1 := bc[n, m] = -dd[[n+1]]; bc[n_, m_] /; m > n+1 := bc[n, m] = bc[n, m-1] + bc[n+1, m-1]; Table[bc[0, m], {m, 0, max}] // Numerator (* Jean-François Alcover, Aug 08 2012 *)
A239315
Array read by antidiagonals: denominators of the core of the classical Bernoulli numbers.
Original entry on oeis.org
15, 15, 15, 105, 105, 105, 21, 105, 105, 21, 105, 105, 105, 105, 105, 15, 105, 105, 105, 105, 15, 165, 165, 1155, 231, 1155, 165, 165, 33, 165, 165, 231, 231, 165, 165, 33, 15015, 15015, 15015, 15015, 15015, 15015, 15015, 15015, 15015
Offset: 0
As a triangle:
15,
15, 15,
105, 105, 105,
21, 105, 105, 21,
105, 105, 105, 105, 105,
etc.
-
max = 12; tb = Table[BernoulliB[n], {n, 0, max}]; td = Table[Differences[tb, n][[3 ;; -1]], {n, 2, max - 1}]; Table[td[[n - k + 1, k]] // Denominator, {n, 1, max - 3}, {k, 1, n}] // Flatten (* Jean-François Alcover, Apr 11 2014 *)
A195240
Numerators of the second differences of the sequence of fractions (-1)^(n+1)*A176618(n)/A172031(n).
Original entry on oeis.org
0, 1, 1, 7, 8, 11, 10, 7, 8, 19, 14, 337, 1028, 5, -2, -1681, 1936, 22133, -21734, -87223, 87388, 427291, -427222, -118181363, 118182728, 4276553, -4276550, -11874730297, 11874730732, 4307920641583
Offset: 0
-
read("transforms") ;
evb := [0, 1, 0, seq(bernoulli(n), n=2..30)] ;
ievb := BINOMIALi(evb) ;
[seq((-1)^n*op(n,ievb),n=1..nops(ievb))] ;
DIFF(%) ;
DIFF(%) ;
apply(numer,%) ; # R. J. Mathar, Sep 20 2011
-
evb = Join[{0, 1, 0}, Table[BernoulliB[n], {n, 2, 32}]]; ievb = Table[ Sum[Binomial[n, k]*evb[[k+1]], {k, 0, n}], {n, 0, Length[evb]-3}]; Differences[ievb, 2] // Numerator (* Jean-François Alcover, Sep 09 2013, after R. J. Mathar *)
A235774
Let b(k) = A164555(k)/A027642(k), the sequence of "original" Bernoulli numbers with -1 instead of A164555(0)=1; then a(n) = numerator of the n-th term of the binomial transform of the b(k) sequence.
Original entry on oeis.org
-1, -1, 1, 1, 59, 3, 169, 5, 179, 7, 533, 9, 26609, 11, 79, 13, 3523, 15, 56635, 17, -168671, 19, 857273, 21, -236304031, 23, 8553247, 25, -23749438409, 27, 8615841677021, 29, -7709321025917, 31, 2577687858559, 33, -26315271552988224913
Offset: 0
-
b[0] = -1; b[1] = 1/2; b[n_] := BernoulliB[n]; a[n_] := Sum[Binomial[n, k]*b[k], {k, 0, n}] // Numerator; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jan 30 2014 *)
A239275
a(n) = numerator(2^n * Bernoulli(n, 1)).
Original entry on oeis.org
1, 1, 2, 0, -8, 0, 32, 0, -128, 0, 2560, 0, -1415168, 0, 57344, 0, -118521856, 0, 5749735424, 0, -91546451968, 0, 1792043646976, 0, -1982765704675328, 0, 286994513002496, 0, -3187598700536922112, 0, 4625594563496048066560, 0, -16555640873195841519616, 0, 22142170101965089931264, 0
Offset: 0
-
seq(numer(2^n*bernoulli(n, 1)), n=0..35); # Peter Luschny, Jul 17 2017
-
Table[Numerator[2^n*BernoulliB[n, 1]], {n, 0, 100}] (* Indranil Ghosh, Jul 18 2017 *)
-
from sympy import bernoulli
def a(n): return (2**n * bernoulli(n, 1)).numerator
print([a(n) for n in range(51)]) # Indranil Ghosh, Jul 18 2017
Showing 1-10 of 25 results.
Comments