cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A168426 Square array of denominators of a truncated array of Bernoulli twin numbers (A168516), read by antidiagonals.

Original entry on oeis.org

3, 6, 6, 30, 15, 30, 30, 15, 15, 30, 42, 105, 105, 105, 42, 42, 21, 105, 105, 21, 42, 30, 105, 105, 105, 105, 105, 30, 30, 15, 105, 105, 105, 105, 15, 30, 66, 165, 165, 1155, 231, 1155, 165, 165, 66, 66, 33, 165, 165, 231, 231, 165, 165, 33, 66, 2730, 15015, 15015, 15015, 15015, 15015, 15015, 15015
Offset: 0

Views

Author

Paul Curtz, Nov 25 2009

Keywords

Comments

Entries are multiples of 3.
The sequence of fractions A051716()/A051717() is a sequence of first differences of A164555()/A027642().
It can be observed (see the difference array in A190339) that A168516/A168426 is a sequence of autosequences of the second kind. - Paul Curtz, Dec 21 2016

Crossrefs

Programs

  • Mathematica
    max = 11; c[0] = 1; c[n_?EvenQ] := BernoulliB[n] + BernoulliB[n-1]; c[n_?OddQ] := -BernoulliB[n] - BernoulliB[n-1]; cc = Table[c[n], {n, 0, max+1}]; diff = Drop[#, 2]& /@ Table[ Differences[cc, n], {n, 0, max-1}]; Flatten[ Table[ diff[[n-k+1, k]], {n, 1, max}, {k, 1, n}]] // Denominator (* Jean-François Alcover, Aug 09 2012 *)

Extensions

More terms from R. J. Mathar, Jul 10 2011

A240581 Array read by antidiagonals: numerators of the core of the classical Bernoulli numbers.

Original entry on oeis.org

2, -1, 1, -1, -8, -1, 1, 4, -4, -1, -1, 4, 8, 4, -1, -1, -8, -4, 4, 8, 1, 7, -4, -116, -32, -116, -4, 7, 5, 32, 28, 16, -16, -28, -32, -5, -2663, -388, 2524, 5072, 6112, 5072, 2524, -388, -2663, -691, -10264, -10652, -8128, -3056, 3056, 8128, 10652, 10264, 691
Offset: 0

Views

Author

Paul Curtz, Apr 08 2014

Keywords

Comments

Sum of antidiagonals: 2/15, 0, -2/21, 0, 2/15, 0, -10/33, 0, 1382/1365,... =-4*A164555(n+4)/A027642(n+4).

Examples

			As a triangle:
2,
-1,  1,
-1, -8, -1,
1,   4, -4, -1,
-1,  4,  8,  4, -1,
etc.
		

References

  • Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187.

Crossrefs

Cf. A239315 (denominators).

Programs

  • Maple
    DifferenceTableBernoulli := proc(n) local A,m,k; A := array(0..n,0..n);
    # pritty print
    for m from 0 to n do for k from 0 to n do A[m, k] := '~' od od;
    # compute elements
    for m from 0 to n do A[m,0] := bernoulli(m, 1);
       for k from m-1 by -1 to 0 do
          A[k, m-k] := A[k+1, m-k-1] - A[k, m-k-1] od od;
    convert(A, matrix) end:
    A := DifferenceTableBernoulli(13); L := NULL;
    for n from 0 to 9 do for k from 0 to n do
       L := L, numer(A[3+k, 3+n-k]) od od;
    L; # Peter Luschny, Apr 12 2014
  • Mathematica
    max = 13; tb = Table[BernoulliB[n], {n, 0, max}]; td = Table[Differences[tb, n][[3 ;; -1]], {n, 2, max - 1}]; Table[td[[n - k + 1, k]] // Numerator, {n, 1, max - 3}, {k, 1, n}] // Flatten (* Jean-François Alcover, Apr 11 2014 *)

Extensions

a(9) corrected by Wesley Ivan Hurt, Apr 08 2014
a(4) corrected by Jean-François Alcover, Apr 11 2014

A239977 a(n) = -Sum_{k=0..n} binomial(n, k)*A226158(k).

Original entry on oeis.org

0, 1, 3, 6, 9, 10, 9, 14, 33, 18, -135, 22, 2097, 26, -38199, 30, 929601, 34, -28820583, 38, 1109652945, 42, -51943281687, 46, 2905151042529, 50, -191329672483911, 54, 14655626154768753, 58, -1291885088448017655, 62, 129848163681107302017, 66
Offset: 0

Views

Author

Paul Curtz, Mar 30 2014

Keywords

Comments

Let T(n, k) denote the difference table of a(n).
(-1)^(k+1)*T(3, 3+k) = T(k+3, 3) for k >= 0.
Without the first two rows and the first two columns we have the core of the Genocchi numbers, like A240581(n)/A239315(n) for the Bernoulli numbers. See A226158(n).
0, 1, 3, 6, 9, 10, ...
1, 2, 3, 3, 1, -1, ...
1, 1, 0, -2, -2, 6, ...
0, -1, -2, 0, 8, 8, ...
-1, -1, 2, 8, 0, -56, ...
0, 3, 6, -8, -56, 0, ...
The definition reflects the identity 2*((1-2^n)*B(n,1) + n) =
2*Sum_{k=0..n} C(n,k)*(2^k-1)*B(k,1) where B(n,x) denotes the Bernoulli polynomials. - Peter Luschny, Apr 16 2014

Crossrefs

Cf. A083007.

Programs

  • Magma
    [0,1] cat [2*((1 - 2^n)*Bernoulli(n) + n): n in [2..40]]; // Vincenzo Librandi, Mar 03 2015
  • Maple
    A239977 := n -> 2*((1-2^n)*bernoulli(n,1) + n):
    seq(A239977(n), n=0..33); # Peter Luschny, Mar 08 2015
  • Mathematica
    a[n_] := (EulerE[n-1, 0]+2)*n; a[0] = 0; a[1] = 1; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 02 2014 *)

Formula

a(n) = 2*n + A226158(n).
a(2n) is divisible by 3.
a(2n+1) = A133653(n).
a(n) = 2*((1 - 2^n)*B(n, 1) + n), B(n, x) the Bernoulli polynomial. - Peter Luschny, Apr 16 2014
From Peter Bala, Mar 02 2015: (Start)
a(n) = (-2)^n * ( B(n,-1/2) - B(n,0) ), where B(n,x) denotes the n-th Bernoulli polynomial. More generally, for any nonzero integer k, k^n*( B(n,1/k) - B(n,0) ) is an integer for n >= 0. Cf. A083007.
a(0) = 0 and for n >= 1, a(n) = 1 - 1/(n + 1)*Sum_{k = 1..n-1} (-2)^(n-k)*binomial(n+1,k)*a(k).
E.g.f.: 2*x*exp(2*x)/(1 + exp(x)) = x + 3*x^2/2! + 6*x^3/3! + .... (End)
a(n) = Sum_{k=0..n-1} 2^k*binomial(n, k)*Bernoulli(k, 1). - Peter Luschny, Aug 17 2021

A256675 Denominators of the inverse binomial transform of Bernoulli(n+2).

Original entry on oeis.org

6, 6, 15, 15, 105, 21, 105, 15, 165, 33, 15015, 1365, 1365, 3, 255, 255, 33915, 399, 21945, 165, 3795, 69, 31395, 1365, 1365, 3, 435, 435, 1038345, 7161, 608685, 255, 255, 3, 959595, 959595, 959595, 3, 6765, 6765, 2036265, 903, 103845, 345, 16215, 141, 1090635
Offset: 0

Views

Author

Paul Curtz, Apr 07 2015

Keywords

Comments

Difference table of B(n+2):
1/6, 0, -1/30, 0, 1/42, 0, -1/30, ...
-1/6, -1/30, 1/30, 1/42, -1/42, -1/30, ...
2/15, 1/15, -1/105, -1/21, -1/105, ...
-1/15, -8/105, -4/105, 4/105, ...
-1/105, 4/105, 8/105, ...
1/21, 4/105, ...
-1/105, ...
...
a(n) is the denominator of the n-th term of the first column.
a(n+2) is the denominator of the n-th term of the third row.
See A239315(n), which is the table without the first two rows.
Inverse binomial transform: 1/6, -1/6, 2/15, -1/15, -1/105, 1/21, -1/105, -1/15, 7/165, 5/33, -2663/15015, ... .

Crossrefs

Programs

  • Mathematica
    max = 42; bb = Table[BernoulliB[n+2], {n, 0, max}]; dd = Table[Differences[bb, n], {n, 0, max}]; dd[[All, 1]] // Denominator (* Jean-François Alcover, Apr 09 2015 *)
  • PARI
    lista(nn) = {A = vector(nn, n, bernfrac(n+1)); for (i=1, #A-1, for(j=0,i-1,A[i+1]-=binomial(i,j)*A[j+1])); for (i=1, #A, print1(denominator(A[i]), ", "));} \\ Michel Marcus, Apr 08 2015

Formula

a(2n) = A029765(n).
a(2n+3) = A001897(n+2).
a(2n)/a(2n+1) = A177735(n).
a(2n+4)/a(2n+3) = A177735(n+3).

A278331 Shifted sequence of second differences of Genocchi numbers.

Original entry on oeis.org

0, -2, -2, 6, 14, -34, -138, 310, 1918, -4146, -36154, 76454, 891342, -1859138, -27891050, 57641238, 1080832286, -2219305810, -50833628826, 103886563462, 2853207760750, -5810302084962, -188424521441482, 382659344967926, 14464296482284734, -29311252309537394, -1277229462293249018
Offset: 0

Views

Author

Keywords

Comments

This is an autosequence of the first kind (array of successive differences shows typical zero diagonal).
Last digits are apparently of period 20.
From A226158(n) for the continuity of autosequences of the first kind.
b(n) = 0, 1, -1, 0, 1, 0, -3, 0, 17, ... = A226158(n) with 1 as second term instead of -1.
c(n) = 0, 0, -1, 0, 1, 0, -3, 0, 17, ... = A226158(n) with 0 as second term instead of -1.
Respective difference tables:
0, -1, -1, 0, 1, 0, -3, 0, 17, ...
-1, 0, 1, 1, -1, -3 , 3, 17, -17, ...
1, 1, 0, -2, -2, 6, 14, -34, -138, ...
etc,
0, 1, -1, 0, 1, 0, -3, 0, 17, ... = 0 followed by A036968(n+1)
1, -2, 1, 1, -1, -3, 3, 17, -17, ...
-3, 3, 0, -2, -2, 6, 14, -34, -138, ...
etc,
0, 0, -1, 0, 1, 0, -3, 0, 17, ...
0, -1, 1, 1, -1, -3, 3, 17, -17, ...
-1, 2, 0, -2, -2, 6, 14, -34, -138, ...
etc.
Since it is in the three tables, a(n) is the core of the Genocchi numbers.

Crossrefs

Cf. A001469, A014781, A036968, A005439 (a(n) second and third diagonals), A164555/A027642, A209308, A226158, A240581(n)/A239315(n) (core of Bernoulli numbers).

Programs

  • Mathematica
    g[0] = 0; g[1] = -1; g[n_] := n*EulerE[n-1, 0]; G = Table[g[n], {n, 0, 30}]; Drop[Differences[G, 2], 2]
    (* or, from Seidel's triangle A014781: *)
    max = 26; T[1, 1] = 1; T[n_, k_] /; 1 <= k <= (n + 1)/2 := T[n, k] = If[EvenQ[n], Sum[T[n - 1, i], {i, k, max}], Sum[T[n - 1, i], {i, 1, k}]]; T[, ] = 0; a[n_] := With[{k = Floor[(n - 1)/2] + 1}, (-1)^k*T[n + 3, k]]; Table[a[n], {n, 0, max}]

Formula

a(n) = (n+2)*E(n+1, 0) - 2*(n+3)*E(n+2, 0) + (n+4)*E(n+3, 0), where E(n,x) is the n-th Euler polynomial.
a(n) = -2*(2^(n+2)-1)*B(n+2) + 4*(2^(n+3)-1)*B(n+3) - 2*(2^(n+4)-1)*B(n+4), where B(n) is the n-th Bernoulli number.
Showing 1-5 of 5 results.