cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 255 results. Next

A309132 a(n) is the denominator of F(n) = A027641(n-1)/n + A027642(n-1)/n^2.

Original entry on oeis.org

1, 1, 1, 16, 1, 36, 1, 64, 27, 100, 1, 144, 1, 196, 75, 256, 1, 324, 1, 400, 49, 484, 1, 576, 125, 676, 243, 784, 1, 900, 1, 1024, 363, 1156, 1225, 1296, 1, 1444, 169, 1600, 1, 1764, 1, 1936, 135, 2116, 1, 2304, 343, 2500, 867, 2704, 1, 2916, 3025, 3136, 361, 3364, 1, 3600, 1, 3844, 1323, 4096, 845, 4356, 1
Offset: 1

Views

Author

Thomas Ordowski, Jul 14 2019

Keywords

Comments

It seems that the numerator of F(n) is the numerator of (B(n-1) + 1/n), where B(k) is the k-th Bernoulli number; if so, for n > 2, the numerator of F(n) is A174341(n-1). How to prove it?
Conjecture: for n > 1, a(n) = 1 if and only if n is prime.
Is this conjecture equivalent to the Agoh-Giuga conjecture?
Theorem 1. If p is prime, then a(p) = 1. Proof. a(2) = 1, so let p be an odd prime. By the von Staudt-Clausen theorem, if k is even, then B(k) = A(k) - Sum_{prime q, q-1 | k} 1/q, where A(k) is an integer and the sum is over all primes q such that q-1 divides k. Thus B(k) = N(k)/D(k) with D(k) = Product_{prime q, q-1 | k} q. Now let k = p-1. Then N(p-1)/D(p-1) = B(p-1) = A(p-1) - 1/p - Sum_{prime q < p, q-1 | p-1} 1/q (*). Add 1/p to both sides of (*) and multiply by p*D(p-1) to get p*N(p-1) + D(p-1) = p*D(p-1)*(A(p-1) - Sum_{prime q < p, q-1 | p-1} 1/q) (**). Now p | D(p-1), so p^2 | p*D(p-1) in (**). The denominators on the right side of (**) are all of the form q < p. Therefore, p^2 divides both sides of (**). Hence F(p) = N(p-1)/p + D(p-1)/p^2 is an integer, so a(p) = 1. - Jonathan Sondow, Jul 14 2019
Conjecture: composite numbers n such that a(n) is squarefree are only the Carmichael numbers A002997. Cf. A309235. - Thomas Ordowski, Jul 15 2019
Conjecture checked up to n = 101101. - Amiram Eldar, Jul 16 2019
Theorem 2. If n is a prime or a Carmichael number, then a(n) = A326690(n) = denominator of (Sum_{prime p | n} 1/p - 1/n). The proof is a generalization of that of Theorem 1. (Note that Theorem 2 implies Theorem 1, since if n is prime, then (Sum_{prime p | n} 1/p - 1/n) = 1/n - 1/n = 0/1, so a(p) = A326690(n) = 1.) For n a prime or a Carmichael number, an application of Theorem 2 is computing a(n) without calculating Bernoulli(n-1) which may be huge; see A309268 and A326690. - Jonathan Sondow, Jul 19 2019
The values of F(n) when n is prime are A327033. - Jonathan Sondow, Aug 16 2019

Examples

			F(n) = 2/1, 0/1, 1/1, 1/16, 1/1, 1/36, 1/1, 1/64, 7/27, 1/100, 1/1, 1/144, -37/1, 1/196, 37/75, 1/256, -211/1, 1/324, 2311/1, 1/400, -407389/49, ...
		

Crossrefs

Programs

  • Magma
    [Denominator(Numerator(Bernoulli(n-1))/n + Denominator(Bernoulli(n-1))/n^2): n in [1..70]]; // Vincenzo Librandi, Jul 14 2019
  • Mathematica
    Table[Denominator[Numerator[BernoulliB[n - 1]] / n + Denominator[ BernoulliB[ n - 1]] / n^2], {n, 70}] (* Vincenzo Librandi, Jul 14 2019 *)
  • PARI
    a(n) = denominator(numerator(bernfrac(n-1))/n + denominator(bernfrac(n-1))/n^2); \\ Michel Marcus, Jul 14 2019
    

Formula

a(p) = 1 for prime p.
a(2k) = (2k)^2 for k > 1.
Conjecture: for k > 0, a(2k+1) = (2k+1)^2 iff 2k+1 is in A121707.
Denominator(F(p)/p) = 1 for the primes p = 2 and p = 1277 but for no other prime p < 1.5 * 10^4. Does denominator(F(p)/p) = 1 for any prime p > 1.5 * 10^4? - Jonathan Sondow, Jul 14 2019
Similarly, Sum_{k=1..p-1} k^(p-1) == -1 (mod p^2) for the prime p = 1277. - Thomas Ordowski, Jul 15 2019
a(n) = denominator(Sum_{prime p | n} 1/p - 1/n) if n is a prime or a Carmichael number. - Jonathan Sondow, Jul 19 2019

A100615 Let N(n)(x) be the Nørlund polynomials as defined in A001898, with N(n)(1) equal to the usual Bernoulli numbers A027641/A027642. Sequence gives numerators of N(n)(2).

Original entry on oeis.org

1, -1, 5, -1, 1, 1, -5, -1, 7, 3, -15, -5, 7601, 691, -91, -35, 3617, 3617, -745739, -43867, 3317609, 1222277, -5981591, -854513, 5436374093, 1181820455, -213827575, -76977927, 213745149261, 23749461029, -249859397004145, -8615841276005, 238988952277727, 84802531453387
Offset: 0

Views

Author

N. J. A. Sloane, Dec 03 2004

Keywords

Comments

With the signs of A359738, the rational sequence reflects the identity B(z)^2 = (z + 1)*B(z) - z*B'(z), that goes back to Euler, where B(z) = z/(1 - e^(-z)) is the e.g.f. of the Bernoulli numbers with B(1) = 1/2. - Peter Luschny, Jan 23 2023

Examples

			1, -1, 5/6, -1/2, 1/10, 1/6, -5/42, -1/6, 7/30, 3/10, -15/22, -5/6, 7601/2730, 691/210, -91/6, -35/2, 3617/34, 3617/30, -745739/798, -43867/42, ... = A100615/A100616.
		

References

  • F. N. David, Probability Theory for Statistical Methods, Cambridge, 1949; see pp. 103-104. [There is an error in the recurrence for B_s^{(r)}.]

Crossrefs

Programs

  • Maple
    S:= series((x/(exp(x)-1))^2, x, 41):
    seq(numer(coeff(S,x,j)*j!), j=0..40); # Robert Israel, Jun 02 2015
    # Second program:
    a := n -> if n = 0 then 1 else numer(-n*bernoulli(n-1) - (n-1)*bernoulli(n)) fi:
    seq(a(n), n = 0..33);  # Peter Luschny, May 18 2023
  • Mathematica
    Table[Numerator@NorlundB[n, 2], {n, 0, 32}] (* Arkadiusz Wesolowski, Oct 22 2012 *)
    Table[If[n == 0, 1, -Numerator[n*BernoulliB[n - 1] + (n - 1)*BernoulliB[n]]], {n, 0,  33}] (* Peter Luschny, May 18 2023 *)
  • Maxima
    a(n):=sum((-1)^k*k!/(k+1)*sum(binomial(n,j)*stirling2(n-j,k)*bern(j),j,0,n-k),k,0,n); /* Vladimir Kruchinin, Jun 02 2015 */
    
  • PARI
    a(n) = numerator(sum(j=0, n, binomial(n,j)*bernfrac(n-j)*bernfrac(j))); \\ Michel Marcus, Mar 03 2020

Formula

E.g.f.: (x/(exp(x)-1))^2. - Vladeta Jovovic, Feb 27 2006
a(n) = numerator(Sum_{k=0..n}(-1)^k*k!/(k+1)*Sum_{j=0..n-k} C(n,j)*Stirling2(n-j,k)*B(j)), where B(n) is Bernoulli numbers. - Vladimir Kruchinin, Jun 02 2015
a(n) = numerator(Sum_{j=0..n} binomial(n,j)*Bernoulli(n-j)*Bernoulli(j)). - Fabián Pereyra, Mar 02 2020
a(n) = -numerator(n*B(n-1) + (n-1)*B(n)) for n >= 1, where B(n) = Bernoulli(n, 0). - Peter Luschny, May 18 2023

A100616 Let B(n)(x) be the Bernoulli polynomials as defined in A001898, with B(n)(1) equal to the usual Bernoulli numbers A027641/A027642. Sequence gives denominators of B(n)(2).

Original entry on oeis.org

1, 1, 6, 2, 10, 6, 42, 6, 30, 10, 22, 6, 2730, 210, 6, 2, 34, 30, 798, 42, 330, 110, 46, 6, 2730, 546, 6, 2, 290, 30, 14322, 462, 510, 170, 2, 6, 54834, 51870, 6, 2, 4510, 330, 1806, 42, 690, 46, 94, 6, 46410, 6630, 66, 22, 530, 30, 798, 798, 174, 290, 118, 6, 56786730
Offset: 0

Views

Author

N. J. A. Sloane, Dec 03 2004

Keywords

Examples

			1, -1, 5/6, -1/2, 1/10, 1/6, -5/42, -1/6, 7/30, 3/10, -15/22, -5/6, 7601/2730, 691/210, -91/6, -35/2, 3617/34, 3617/30, -745739/798, -43867/42, ... = A100615/A100616.
		

References

  • F. N. David, Probability Theory for Statistical Methods, Cambridge, 1949; see pp. 103-104. [There is an error in the recurrence for B_s^{(r)}.]

Crossrefs

Programs

  • Maple
    S:= series((x/(exp(x)-1))^2, x, 101):
    seq(denom(coeff(S,x,n)*n!), n=0..100); # Robert Israel, Jun 02 2015
  • Mathematica
    Table[Denominator@NorlundB[n, 2], {n, 0, 59}] (* Arkadiusz Wesolowski, Oct 22 2012 *)
  • PARI
    a(n) = denominator(sum(j=0, n, binomial(n,j)*bernfrac(n-j)*bernfrac(j))); \\ Michel Marcus, Mar 03 2020

Formula

E.g.f.: (x/(exp(x)-1))^2. - Vladeta Jovovic, Feb 27 2006
a(n) = denominator(Sum_{j=0..n} binomial(n,j)*Bernoulli(n-j)*Bernoulli(j)). - Fabián Pereyra, Mar 02 2020

A285863 Numerators of Bernoulli numbers 3^n*B(n), with B(n) = A027641(n)/A027642(n).

Original entry on oeis.org

1, -3, 3, 0, -27, 0, 243, 0, -2187, 0, 98415, 0, -122408577, 0, 11160261, 0, -51899996619, 0, 5664991530321, 0, -202943637014337, 0, 8938507796555139, 0, -22252066887294301257, 0, 7246946747292751629, 0, -181103830292539169071623
Offset: 0

Views

Author

Wolfdieter Lang, Apr 29 2017

Keywords

Comments

The denominators are given in A285068.
In general the numbers B(d;n) = d^n*B(n), for n >= 0, have e.g.f. d*x/(exp(d*x) - 1). They are also the exponential convolution of the generalized Bernoulli numbers B[d,a](n), obtained from the generalized Stirling2 numbers S2[d,a], with the sequence {(-a)^n}_{n>=0}. See a comment in A157817 for the B[4,1] and B[4,3] examples.
These numbers B(d;n) and their polynomials B(d;n,x) = Sum_{m=0..n} binomial(n, m)*B(d;n-m)*x^m are used in the generalized so-called Faulhaber formula for the sums of powers of arithmetic progressions defined by SP(d,a;n,m) := Sum_{j=0..m} (a + d*j)^n = Sum_{k=0..n} binomial(n, k)*a^(n-k)*d^k*SP(k,m) with SP(k,m) = SP(1,0;k,m), n >= 0, m >= 0, and 0^0 := 1.
The Faulhaber formula is: SP(d,a;n,m) = (1/(d*(n+1)))*[B(d;n+1,x = a+d*(m+1)) - B(d;n+1,x = d) - B(d;n+1,x = a) + B(d;n+1,x=0) + d^(n+1)*[n=0]]. Here [n=0] is the Kronecker delta_{n,0} symbol: 1 if n=0 and 0 otherwise.
A simpler version of the Faulhaber formula is for a=0: SP(d,0;0,m) = m+1 and SP(d,0;n,m) = d^n*(1/(n+1))*(B(n+1, x = m+1) - B(n+1, x=1)) for n >= 1, and for a an integer >= 1: Sum_{k=0..n} binomial(n, k)*a^(n-k) * d^k * (1/(k+1)) * (B(k+1, x=m+1) - B(k+1, x=1)). Here B(n, x) = B(1;n,x) are the usual Bernoulli polynomials from A196838/A196839 or A053382/A053383.

Crossrefs

Programs

  • Maple
    seq(numer(3^n*bernoulli(n)), n=0..28); # Peter Luschny, Jul 17 2017
  • Mathematica
    Table[Numerator[3^n*BernoulliB[n]], {n, 0, 100}] (* Indranil Ghosh, Jul 18 2017 *)
  • PARI
    a(n) = numerator(3^n * bernfrac(n)); \\ Ruud H.G. van Tol, Jan 31 2024
  • Python
    from sympy import bernoulli
    def a(n): return -3 if n == 1 else (3**n * bernoulli(n)).numerator
    print([a(n) for n in range(51)]) # Indranil Ghosh, Jul 18 2017
    

Formula

a(n) = numerator(r(n)) with r(n) = 3^n*A027641(n)/A027642(n), n >= 0.
E.g.f. {r(n)}_{n>=0}: 3*x/(exp(3*x) - 1).

A172298 a(n) = A027641(n) * A164555(n).

Original entry on oeis.org

1, -1, 1, 0, 1, 0, 1, 0, 1, 0, 25, 0, 477481, 0, 49, 0, 13082689, 0, 1924313689, 0, 30489001321, 0, 730192467169, 0, 55867983514256281, 0, 73155570928609, 0, 564036899167989738841, 0, 74232720893311466588760025, 0, 59433630916551169012841089, 0, 6644474695172651051906689
Offset: 0

Views

Author

Paul Curtz, Jan 31 2010

Keywords

Comments

Squares of Bernoulli number numerators (apart from the sign flipped at a(1)).
The associated denominators of the squared Bernoulli numbers are in A172282.

Crossrefs

Extensions

Edited and extended by R. J. Mathar, Feb 02 2010

A176144 a(2n) = A164555(n). a(2n+1) = A027641(n).

Original entry on oeis.org

1, 1, 1, -1, 1, 1, 0, 0, -1, -1, 0, 0, 1, 1, 0, 0, -1, -1, 0, 0, 5, 5, 0, 0, -691, -691, 0, 0, 7, 7, 0, 0, -3617, -3617, 0, 0, 43867, 43867, 0, 0, -174611, -174611, 0, 0, 854513, 854513, 0, 0, -236364091, -236364091, 0, 0, 8553103, 8553103, 0, 0, -23749461029, -23749461029, 0, 0, 8615841276005
Offset: 0

Views

Author

Paul Curtz, Apr 10 2010

Keywords

Comments

Formally, these are the numerators of a sequence of fractions defined by alternating A164555(n)/A027642(n) with A027641(n)/A027642(n),
which apart from the third term duplicates the Bernoulli numbers.
Essentially a duplication of the entries of A027641.

Crossrefs

Extensions

Edited by R. J. Mathar, Jun 07 2010

A176184 a(2n) = A027641(n). a(2n+1) = A164555(n).

Original entry on oeis.org

1, 1, -1, 1, 1, 1, 0, 0, -1, -1, 0, 0, 1, 1, 0, 0, -1, -1, 0, 0, 5, 5, 0, 0, -691, -691, 0, 0, 7, 7, 0, 0, -3617, -3617, 0, 0
Offset: 0

Views

Author

Paul Curtz, Apr 11 2010

Keywords

Comments

Essentially the same as A176144. (The signs of the third and fourth entry are swapped.)
This refers to a shuffling of the "original" Bernoulli numbers and the Bernoulli numbers in opposite order compared to the composition discussed in A176150.
The inverse binomial transform of the shuffle in A176150 was 1,0, -1/2, 0, 13/6, -20/3. The shuffling here would yield an inverse binomial transform 1, 0, -3/2, 4, -47/6, 40/3, -21, 95/3 etc.
The difference between the corresponding elements of these two binomial transforms element by element is 0, 0, 1, -4, 10, -20, 35, -56, 84, -120, 165, -220,..., a signed variant of A000292.

A285864 Triangle read by rows: a(n,m) = numerator(binomial(n,m)*2^(n-m)*B(n-m)) with B(k) the Bernoulli numbers A027641(k)/A027642(k).

Original entry on oeis.org

1, -1, 1, 2, -2, 1, 0, 2, -3, 1, -8, 0, 4, -4, 1, 0, -8, 0, 20, -5, 1, 32, 0, -8, 0, 10, -6, 1, 0, 32, 0, -56, 0, 14, -7, 1, -128, 0, 128, 0, -112, 0, 56, -8, 1, 0, -384, 0, 128, 0, -336, 0, 24, -9, 1, 2560, 0, -384, 0, 320, 0, -112, 0, 30, -10, 1
Offset: 0

Views

Author

Wolfdieter Lang, May 03 2017

Keywords

Comments

The denominator triangle b(n,m) is given in A285865.
a(n,m)/b(n,m) = B(2;n,m) is the d = 2 instance of the fractional d-family of triangles B(d;n,m) = binomial(n,m)*d^(n-m)*B(n-m), for d >= 1. They are the coefficient triangles of generalized Bernoulli polynomials PB(d;n,x) = Sum_{m=0..n} B(d;n,m)*x^m for n >= 0.
{PB(d;n,x)}{n>=0} has e.g.f. EB(d;x,z) := Sum{n>=0} PB(d;n,x)*z^n = d*z*exp(x*z)/(exp(d*z)-1). B(d;n,m) is a Sheffer triangle of the Appell type for each d, denoted by (d*z/(exp(d*z - 1)), z).
PB(d;n,x) gives a (trivial) generalization of the Bernoulli polynomials with coefficients given in A196838/A196839 (rising powers of x), and this is PB(1;n,x).
The polynomials PB(d;n,x) appear in the generalized Faulhaber formula for sums of powers of arithmetic progressions SP(n,m) := Sum_{j=0..m} (a + d*j)^n, n >= 0, m >= 0, d >= 1, a = 0 for d = 1 and a from the smallest positive restricted residue system modulo d >= 2. For this Faulhaber formula see a comment in A285863, where they are named B(d;n,x).
The row sums of the rational triangle B(2;n,m) give A157779(n)/A141459(n). The alternating row sums are given in A285866/A141459(n).

Examples

			The triangle a(n,m) begins:
n\m    0    1    2   3    4    5    6  7  8   9 10 ...
0:     1
1:    -1    1
2:     2   -2    1
3:     0    2   -3   1
4:    -8    0    4  -4    1
5:     0   -8    0  20   -5    1
6:    32    0   -8   0   10   -6    1
7:     0   32    0 -56    0   14   -7  1
8:  -128    0  128   0 -112    0   56 -8  1
9:     0 -384    0 128    0 -336    0 24 -9   1
10: 2560    0 -384   0  320    0 -112  0 30 -10  1
...
The rational triangle B(2;n,m) = a(n,m)/A285865(n,m) begins:
n\m     0       1        2     3     4      5     6    7    8   9  10 ...
0:      1
1:     -1       1
2:     2/3     -2        1
3:      0       2       -3     1
4:    -8/15     0        4    -4     1
5:      0     -8/3       0   20/3   -5      1
6:    32/21     0       -8     0    10     -6     1
7:      0     32/3       0  -56/3    0     14    -7    1
8:  -128/15     0      128/3   0  -112/3    0   56/3  -8    1
9:      0    -384/5      0    128    0   -336/5   0   24   -9   1
10:  2560/33    0      -384    0    320     0   -112   0   30 -10   1
...
		

Crossrefs

Programs

  • Maple
    T := d -> (n,m) -> numer(binomial(n, m)*d^(n-m)*bernoulli(n-m)):
    for n from 0 to 10 do seq(T(2)(n,k),k=0..n) od; # Peter Luschny, May 04 2017
  • Mathematica
    T[n_, m_]:=Numerator[Binomial[n, m]*2^(n - m)*BernoulliB[n - m]]; Table[T[n, m], {n, 0, 20}, {m, 0, n}] // Flatten (* Indranil Ghosh, May 06 2017 *)
  • PARI
    T(n, m) = numerator(binomial(n, m)*2^(n - m)*bernfrac(n - m));
    for(n=0, 20, for(m=0, n, print1(T(n, m),", ");); print();) \\ Indranil Ghosh, May 06 2017
    
  • Python
    from sympy import binomial, bernoulli
    def T(n, m): return (binomial(n, m) * (-2)**(n - m) * bernoulli(n - m)).numerator
    for n in range(21): print([T(n, m) for m in range(n + 1)]) # Indranil Ghosh, May 06 2017

Formula

a(n,m) = numerator(binomial(n, m)*2^(n-m)*B(n-m)), with the Bernoulli numbers B(k) = A027641(k)/A027642(k).
E.g.f.s of the rational column sequences {B(2;n, m)}_{n>=0} are Ecol(m, x) = (2*x/(exp(2*x) - 1))*x^m/m! (Sheffer property). Here the numerators of column m are numerator([x^m/m!] Ecol(m, x)), m >= 0.

A172032 Numerator of the rational sequence c(n) defined by c(n+1) - 2*c(n) = Bernoulli number B_n (A027641/A027642).

Original entry on oeis.org

0, 1, 3, 19, 19, 379, 379, 3539, 3539, 42461, 42461, 1868459, 1868459, 32384089, 32384089, 388644103, 388644103, 26424178387, 26424178387, 669590253599, 669590253599, 1605990140413, 1605990140413, 148027376624695, 148027376624695, 980410698447157
Offset: 0

Views

Author

Paul Curtz, Jan 23 2010

Keywords

Comments

c(n) starts with: 0, 1, 3/2, 19/6, 19/3,3 79/30, 379/15, 3539/70, 3539/35, 42461/210, 42461/105, ...
The corresponding denominator is A172031 (also denominator of rational sequence defined in A172030).
It appears that A172030/A172031 - A172032/A172031 = 0, 0, 1, 2, 4, 8, 16, ... that is A131577 prepended with 0.

Programs

  • PARI
    aseq(m) = {cvec = vector(m); cvec[1] = 0; for (i=2, m, cvec[i] = bernfrac(i-2) + 2*cvec[i-1];);} \\Michel Marcus, Feb 03 2013

Extensions

Edited by Michel Marcus, Feb 03 2013

A227500 a(0)=a(1)=0; for n>1, a(n) = numerator( r(n) ), where r(n) = r(n-1)+r(n-2)+A027641(n-2)/A027642(n-2) and r(0)=r(1)=a(0).

Original entry on oeis.org

0, 0, 1, 1, 5, 13, 19, 179, 1028, 1103, 893, 2889, 15445, 249787, 24988, 8494711, 6888613, 7423979, 101535859, 329279361, 1187585188, 128951009, 2513033741, 25007430139, 599126628077, 591141383117, -3361274604, 1470023540617, 22712552603063, 322385807064733, -26340115994784101
Offset: 0

Views

Author

Paul Curtz, Jul 13 2013

Keywords

Comments

Reduced a(n)/c(n) = 0, 0, 1, 1/2, 5/3, 13/6, 19/5, 179/30, 1028/105, 1103/70, 893/35, 2889/70, 15445/231, 249787/2310,... .
After the first Bernoulli numbers we consider the same transform applied to the second Bernoulli numbers A164555(n)/A027642(n). Hence reduced b(n)/c(n) = 0, 0, 1, 3/2, 8/3, 25/6, 34/5, 329/30, 1868/105, 2013/70, 1628/35, 5269/70, 28150/231, 455377/2310, ....
Conjecture: (b(n)-a(n))/c(n) = 0, 0, 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ..., that is two 0 followed by A000045.
This conjecture is confirmed up to 100 terms. [Jean-François Alcover, Jul 19 2013]

Examples

			a(2)=1 because r(2)=r(1)+r(0)+A027641(0)/A027642(0)=0+0+1=1;
a(3)=1 because r(3)=r(2)+r(1)+A027641(1)/A027642(1)=1+0-1/2=1/2;
a(4)=5 because r(4)=r(3)+r(2)+A027641(2)/A027642(2)=1+1/2+1/6=5/3.
		

Programs

  • Mathematica
    b1[0] = b1[1] = 0; b1[n_] := b1[n] = b1[n - 1] + b1[n - 2] + BernoulliB[n - 2]; a[n_] := Numerator[b1[n]]; Table[a[n], {n, 0, 30}]  (* Jean-François Alcover, Jul 19 2013 *)

Extensions

More terms from Jean-François Alcover, Jul 19 2013
Showing 1-10 of 255 results. Next