A100615
Let N(n)(x) be the Nørlund polynomials as defined in A001898, with N(n)(1) equal to the usual Bernoulli numbers A027641/A027642. Sequence gives numerators of N(n)(2).
Original entry on oeis.org
1, -1, 5, -1, 1, 1, -5, -1, 7, 3, -15, -5, 7601, 691, -91, -35, 3617, 3617, -745739, -43867, 3317609, 1222277, -5981591, -854513, 5436374093, 1181820455, -213827575, -76977927, 213745149261, 23749461029, -249859397004145, -8615841276005, 238988952277727, 84802531453387
Offset: 0
1, -1, 5/6, -1/2, 1/10, 1/6, -5/42, -1/6, 7/30, 3/10, -15/22, -5/6, 7601/2730, 691/210, -91/6, -35/2, 3617/34, 3617/30, -745739/798, -43867/42, ... = A100615/A100616.
- F. N. David, Probability Theory for Statistical Methods, Cambridge, 1949; see pp. 103-104. [There is an error in the recurrence for B_s^{(r)}.]
-
S:= series((x/(exp(x)-1))^2, x, 41):
seq(numer(coeff(S,x,j)*j!), j=0..40); # Robert Israel, Jun 02 2015
# Second program:
a := n -> if n = 0 then 1 else numer(-n*bernoulli(n-1) - (n-1)*bernoulli(n)) fi:
seq(a(n), n = 0..33); # Peter Luschny, May 18 2023
-
Table[Numerator@NorlundB[n, 2], {n, 0, 32}] (* Arkadiusz Wesolowski, Oct 22 2012 *)
Table[If[n == 0, 1, -Numerator[n*BernoulliB[n - 1] + (n - 1)*BernoulliB[n]]], {n, 0, 33}] (* Peter Luschny, May 18 2023 *)
-
a(n):=sum((-1)^k*k!/(k+1)*sum(binomial(n,j)*stirling2(n-j,k)*bern(j),j,0,n-k),k,0,n); /* Vladimir Kruchinin, Jun 02 2015 */
-
a(n) = numerator(sum(j=0, n, binomial(n,j)*bernfrac(n-j)*bernfrac(j))); \\ Michel Marcus, Mar 03 2020
A001898
Denominators of Bernoulli polynomials B(n)(x).
Original entry on oeis.org
1, 2, 12, 8, 240, 96, 4032, 1152, 34560, 7680, 101376, 18432, 50319360, 7741440, 6635520, 884736, 451215360, 53084160, 42361159680, 4459069440, 1471492915200, 140142182400, 1758147379200, 152882380800, 417368899584000, 33389511966720, 15410543984640
Offset: 0
The Bernoulli polynomials B(0)(x) through B(6)(x) are:
1;
-(1/2)*x;
(1/12)*(3*x-1)*x;
-(1/8)*(x-1)*x^2;
(1/240)*(15*x^3-30*x^2+5*x+2)*x;
-(1/96)*(x-1)*(3*x^2-7*x-2)*x^2;
(1/4032)*(63*x^5-315*x^4+315*x^3+91*x^2-42*x-16)*x.
- F. N. David, Probability Theory for Statistical Methods, Cambridge, 1949; see pp. 103-104. [There is an error in the recurrence for B_s^{(r)}.]
- N. E. Nørlund, Vorlesungen über Differenzenrechnung. Springer-Verlag, Berlin, 1924, p. 459.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
B:=bernoulli; b:=proc(s) option remember; local t; global r; if s=0 then RETURN(1); fi; expand((-r/s)*add( (-1)^t*binomial(s,t)*B(t)*b(s-t),t=1..s)); end; [seq(denom(b(n)),n=0..30)];
-
B[s_] := B[s] = If[s == 0, 1, (-x/s)*Sum[(-1)^t*Binomial[s, t]*
BernoulliB[t]*B[s - t], {t, 1, s}]] // Factor;
a[n_] := If[n == 0, 1, B[n] // First // Denominator];
Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Jul 24 2022 *)
Entry revised Dec 03 2004
A100655
Triangle read by rows giving coefficients in Bernoulli polynomials as defined in A001898, after multiplication by the common denominators A001898(n).
Original entry on oeis.org
1, 0, -1, 0, -1, 3, 0, 0, 1, -1, 0, 2, 5, -30, 15, 0, 0, -2, -5, 10, -3, 0, -16, -42, 91, 315, -315, 63, 0, 0, 16, 42, -7, -105, 63, -9, 0, 144, 404, -540, -2345, -840, 3150, -1260, 135, 0, 0, -144, -404, -100, 665, 448, -630, 180, -15, 0, -768, -2288, 2068, 11792, 8195, -8085, -8778, 6930, -1485, 99
Offset: 0
The Bernoulli polynomials B(0)(x) through B(6)(x) are:
1
-(1/2)* x
(1/12)*(3*x - 1)*x
-(1/8)*(x-1)*x^2
(1/240)*(15*x^3 - 30*x^2 + 5*x + 2)*x
-(1/96)*(x-1)*(3*x^2 - 7*x - 2)*x^2
(1/4032)*(63*x^5 - 315*x^4 + 315*x^3 + 91*x^2 - 42*x - 16)*x
Triangle of coefficients starts:
[0] [1],
[1] [0, -1],
[2] [0, -1, 3],
[3] [0, 0, 1, -1],
[4] [0, 2, 5, -30, 15],
[5] [0, 0, -2, -5, 10, -3],
[6] [0, -16, -42, 91, 315, -315, 63],
[7] [0, 0, 16, 42, -7, -105, 63, -9],
[8] [0, 144, 404, -540, -2345, -840, 3150, -1260, 135].
- Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Math., 1st ed.; Addison-Wesley, 1989, p. 257.
-
CoeffList := p -> op(PolynomialTools:-CoefficientList(simplify(p),x)):
E2 := (n, k) -> combinat[eulerian2](n, k): m := n -> mul(j-x, j = 1..n):
Epoly := n -> simplify(expand(add(E2(n, k)*binomial(x+k,2*n), k = 0..n)/m(n))):
poly := n -> Epoly(n)*denom(Epoly(n)):
seq(print(CoeffList(poly(n))), n = 0..8); # Peter Luschny, Feb 05 2021
-
row[n_] := NorlundB[n, x] // Together // Numerator // CoefficientList[#, x]&; Table[row[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jul 06 2019, after Peter Luschny *)
-
# Formula (83), page 146 in Nörlund.
@cached_function
def NoerlundB(n, x):
if n == 0: return 1
return expand((-x/n)*add((-1)^k*binomial(n,k)*bernoulli(k)*NoerlundB(n-k,x) for k in (1..n)))
def A100655_row(n): return numerator(NoerlundB(n, x)).list()
[A100655_row(n) for n in (0..8)] # Peter Luschny, Jul 01 2019
A197419
Triangle with the numerator of the coefficient [x^k] of the second order Bernoulli polynomial B_n^(2)(x) in row n, column 0<=k<=n.
Original entry on oeis.org
1, -1, 1, 5, -2, 1, -1, 5, -3, 1, 1, -2, 5, -4, 1, 1, 1, -5, 25, -5, 1, -5, 1, 3, -10, 25, -6, 1, -1, -5, 7, 7, -35, 35, -7, 1, 7, -4, -10, 28, 7, -28, 70, -8, 1, 3, 21, -6, -10, 21, 63, -42, 30, -9, 1, -15, 3, 21, -20, -25, 42, 21, -60, 75, -10, 1, -5, -15, 33, 77, -55, -55, 77, 33, -165, 275, -11, 1, 7601, -10, -45, 66, 231, -132, -110, 132, 99, -110, 55, -12, 1
Offset: 0
The table of the coefficients is
1;
-1,1;
5/6,-2,1; 5/6-2x+x^2
-1/2,5/2,-3,1; -1/2+5x/2-3x^2+x^3
1/10,-2,5,-4,1;
1/6,1/2,-5,25/3,-5,1;
-5/42,1,3/2,-10,25/2,-6,1;
-1/6,-5/6,7/2,7/2,-35/2,35/2,-7,1;
7/30,-4/3,-10/3,28/3,7,-28,70/3,-8,1;
3/10,21/10,-6,-10,21,63/5,-42,30,-9,1;
-15/22,3,21/2,-20,-25,42,21,-60,75/2,-10,1;
-5/6,-15/2,33/2,77/2,-55,-55,77,33,-165/2,275/6,-11,1;
7601/2730,-10,-45,66,231/2,-132,-110,132,99/2,-110,55,-12,1;
-
A197419 := proc(n,k)
local a,Bt,Bnx,o ,t,x;
a := 2 ;
Bt := (t/(exp(t)-1))^a*exp(x*t) ;
Bnx := n!*coeftayl(Bt,t=0,n) ;
coeftayl(Bnx,x=0,k) ;
numer(%) ;
end proc:
seq(seq(A197419(n,k),k=0..n),n=0..4) ; # print row by row
-
t[n_, m_] := If [n == m, 1, 2*Binomial[n, m]*Sum[StirlingS2[n-m, k]*StirlingS1[2+k, 2]/((k+1)*(2+k)), {k, 1, n-m}]]; Table[t[n, m] // Numerator, {n, 0, 12}, {m, 0, n}] // Flatten (* Jean-François Alcover, Dec 12 2013, after Vladimir Kruchinin *)
-
T(n,m):=num(if n=m then 1 else 2*binomial(n,m)* sum(stirling2(n-m,k) *stirling1(2+k,2)/ ((k+1)*(2+k)),k,1,n-m)); /* Vladimir Kruchinin, Oct 23 2011 */
Showing 1-4 of 4 results.
Comments