cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A141459 a(n) = Product_{p-1 divides n} p, where p is an odd prime.

Original entry on oeis.org

1, 1, 3, 1, 15, 1, 21, 1, 15, 1, 33, 1, 1365, 1, 3, 1, 255, 1, 399, 1, 165, 1, 69, 1, 1365, 1, 3, 1, 435, 1, 7161, 1, 255, 1, 3, 1, 959595, 1, 3, 1, 6765, 1, 903, 1, 345, 1, 141, 1, 23205, 1, 33, 1, 795, 1, 399, 1, 435, 1, 177, 1, 28393365, 1, 3, 1, 255, 1, 32361, 1, 15, 1, 2343, 1, 70050435
Offset: 0

Views

Author

Paul Curtz, Aug 08 2008

Keywords

Comments

Previous name was: A027760(n)/2 for n>=1, a(0) = 1.
Conjecture: a(n) = denominator of integral_{0..1}(log(1-1/x)^n) dx. - Jean-François Alcover, Feb 01 2013
Define the generalized Bernoulli function as B(s,z) = -s*z^s*HurwitzZeta(1-s,1/z) for Re(1/z) > 0 and B(0,z) = 1 for all z; further the generalized Bernoulli polynomials as Bp(m,n,z) = Sum_{j=0..n} B(j,m)*C(n,j)*(z-1)^(n-j) then the a(n) are denominators of Bp(2,n,1), i. e. of the generalized Bernoulli numbers in the case m=2. The numerators of these numbers are A157779(n). - Peter Luschny, May 17 2015
From Peter Luschny, Nov 22 2015: (Start)
a(n) are the denominators of the centralized Bernoulli polynomials 2^n*Bernoulli(n, x/2+1/2) evaluated at x=1. The numerators are A239275(n).
a(n) is the odd part of A141056(n).
a(n) is squarefree, by the von Staudt-Clausen theorem. (End)
Apparently a(n) = denominator(Sum_{k=0..n-1}(-1)^k*E2(n-1, k+1)/binomial(2*n-1, k+1)) where E2(n, k) denotes the second-order Eulerian numbers A340556. - Peter Luschny, Feb 17 2021

Examples

			The denominators of 1, 0, -1/3, 0, 7/15, 0, -31/21, 0, 127/15, 0, -2555/33, 0, 1414477/1365, ...
		

Crossrefs

Programs

  • Maple
    Bfun := (s,z) -> `if`(s=0,1,-s*z^s*Zeta(0,1-s,1/z): # generalized Bernoulli function
    Bpoly := (m,n,z) -> add(Bfun(j,m)*binomial(n,j)*(z-1)^(n-j),j=0..n): # generalized Bernoulli polynomials
    seq(Bpoly(2,n,1),n=0..50): denom([%]);
    # which simplifies to:
    a := n -> 0^n+add(Zeta(1-j)*(2^j-2)*j*binomial(n,j), j=1..n):
    seq(denom(a(n)), n=0..50); # Peter Luschny, May 17 2015
    # Alternatively:
    with(numtheory):
    ClausenOdd := proc(n) local S, m;
    S := map(i -> i + 1, divisors(n));
    S := select(isprime, S) minus {2};
    mul(m, m = S) end: seq(ClausenOdd(n), n=0..72); # Peter Luschny, Nov 22 2015
    # Alternatively:
    N:= 1000: # to get a(0) to a(N)
    V:= Array(0..N, 1):
    for p in select(isprime, [seq(i,i=3..N+1,2)]) do
      R:=[seq(j,j=p-1..N, p-1)]:
      V[R]:= V[R] * p;
    od:
    convert(V,list); # Robert Israel, Nov 22 2015
  • Mathematica
    a[n_] := If[OddQ[n], 1, Denominator[-2*(2^(n - 1) - 1)*BernoulliB[n]]]; Table[a[n], {n, 0, 72}] (* Jean-François Alcover, Jan 30 2013 *)
    Table[Times @@ Select[Divisors@ n + 1, PrimeQ@ # && OddQ@ # &] + Boole[n == 0], {n, 0, 72}] (* Michael De Vlieger, Apr 30 2017 *)
  • PARI
    A141056(n) =
    {
        p = 1;
        if (n > 0,
            fordiv(n, d,
                r = d + 1;
                if (isprime(r) & r>2, p = p*r)
            )
        );
        return(p)
    }
    for(n=0, 72, print1(A141056(n), ", ")); \\ Peter Luschny, Nov 22 2015
    
  • Sage
    def A141459_list(size):
        f = x / sum(x^(n*2+1)/factorial(n*2+1) for n in (0..2*size))
        t = taylor(f, x, 0, size)
        return [(factorial(n)*s).denominator() for n,s in enumerate (t.list())]
    print(A141459_list(72)) # Peter Luschny, Jul 05 2016

Formula

a(2*n+1) = 1. a(2*n)= A001897(n).
a(n) = denominator(0^n + Sum_{j=1..n} zeta(1-j)*(2^j-2)*j*C(n,j)). - Peter Luschny, May 17 2015
Let P(x)= Sum_{n>=0} x^(2*n+1)/(2*n+1)! then a(n) = denominator( n! [x^n] x/P(x) ). - Peter Luschny, Jul 05 2016
a(n) = A157818(n)/4^n. See a comment under A157817, also for other Bernoulli numbers B[4,1] and B[4,3] with this denominator. - Wolfdieter Lang, Apr 28 2017

Extensions

1 prepended and offset set to 0 by Peter Luschny, May 17 2015
New name from Peter Luschny, Nov 22 2015

A288873 Numerators of scaled Bernoulli numbers 4^n*B(n), with B(n) = A027641(n)/A027642(n).

Original entry on oeis.org

1, -2, 8, 0, -128, 0, 2048, 0, -32768, 0, 2621440, 0, -5796528128, 0, 939524096, 0, -7767448354816, 0, 1507258642989056, 0, -95993412418797568, 0, 7516375836686024704, 0, -33265288504730187726848, 0, 19259875741830735724544, 0, -855664510723636131971203072, 0, 4966694343692730467779807805440
Offset: 0

Views

Author

Wolfdieter Lang, Jul 05 2017

Keywords

Comments

The denominators seem to be given in A141459.
See A285863 for comments on B(d;n) = d^n*B(n), for n >= 0, with e.g.f. d*x/(exp(d*x) - 1).

Examples

			The rationals r(n) begin: 1, -2, 8/3, 0, -128/15, 0, 2048/21, 0, -32768/15, 0, 2621440/33, 0, -5796528128/1365, 0, 939524096/3, 0, -7767448354816/255, 0, 1507258642989056/399, 0, -95993412418797568/165, ...
		

Crossrefs

Cf. A141459, A027641/A027642, (-1)^n*A239275(n)/A141459(n) (B(2;n)), A285863/A285068 (B(3;n)).

Programs

  • Maple
    seq(numer(4^n*bernoulli(n)),n=0..28); # Peter Luschny, Jul 17 2017
  • Mathematica
    Table[4^n BernoulliB[n] // Numerator, {n, 0, 30}] (* Jean-François Alcover, Jul 14 2018 *)
  • PARI
    a(n) = numerator(4^n*bernfrac(n)); \\ Michel Marcus, Jul 06 2017
    
  • Python
    from sympy import bernoulli
    def a(n): return -2 if n == 1 else (4**n * bernoulli(n)).numerator
    [a(n) for n in range(31)]  # Indranil Ghosh, Jul 06 2017

Formula

a(n) = numerator(r(n)), with the rationals r(n) = 4^n*A027641(n)/A027642(n), n >= 0.
E.g.f. of {r(n)}_{n>=0}: 4*x/(exp(4*x) - 1).
Showing 1-2 of 2 results.