Original entry on oeis.org
0, 1, 7, 59, 605, 7365, 104055, 1675275, 30290085, 607828725, 13406691375, 322415322075, 8396547684525, 235419569309925, 7070492932878375, 226469231898784875, 7706144167912315125, 277613088828805855125, 10555630035365385345375
Offset: 0
A192744
Constant term of the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments.
Original entry on oeis.org
1, 1, 3, 8, 29, 133, 762, 5215, 41257, 369032, 3676209, 40333241, 483094250, 6271446691, 87705811341, 1314473334832, 21017294666173, 357096406209005, 6424799978507178, 122024623087820183, 2439706330834135361, 51219771117454755544
Offset: 0
The first five polynomials and their reductions:
1 -> 1
1+x -> 1+x
2+x+x^2 -> 3+2x
6+2x+x^2+x^3 -> 8+5x
24+6x+2x^2+x^3+x^4 -> 29+13x, so that
A192744=(1,1,3,8,29,...) and A192745=(0,1,2,5,13,...).
-
A192744p := proc(n,x)
option remember;
if n = 0 then
1;
else
x*procname(n-1,x)+n! ;
expand(%) ;
end if;
end proc:
A192744 := proc(n)
local p;
p := A192744p(n,x) ;
while degree(p,x) > 1 do
p := algsubs(x^2=x+1,p) ;
p := expand(p) ;
end do:
coeftayl(p,x=0,0) ;
end proc: # R. J. Mathar, Dec 16 2015
-
q = x^2; s = x + 1; z = 40;
p[0, n_] := 1; p[n_, x_] := x*p[n - 1, x] + n!;
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}] :=
FixedPoint[(s PolynomialQuotient @@ #1 +
PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]
(* A192744 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]
(* A192745 *)
A192459
Coefficient of x in the reduction by x^2->x+2 of the polynomial p(n,x) defined below in Comments.
Original entry on oeis.org
1, 3, 17, 133, 1315, 15675, 218505, 3485685, 62607195, 1250116875, 27468111825, 658579954725, 17109329512275, 478744992200475, 14354443912433625, 459128747151199125, 15604187119787140875, 561558837528374560875, 21332903166207470462625
Offset: 0
The first four polynomials p(n,x) and their reductions are as follows:
p(0,x)=x -> x
p(1,x)=x(2+x) -> 2+3x
p(2,x)=x(2+x)(4+x) -> 14+17x
p(3,x)=x(2+x)(4+x)(6+x) -> 118+133x.
From these, read
A192457=(1,2,14,118,...) and A192459=(1,3,17,133,...)
A192757
Constant term of the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments.
Original entry on oeis.org
1, 3, 5, 10, 17, 28, 47, 76, 125, 203, 329, 534, 865, 1400, 2267, 3668, 5937, 9607, 15545, 25154, 40700, 65856, 106558, 172415, 278975, 451392, 730368, 1181762, 1912131, 3093895, 5006028, 8099924, 13105954, 21205880, 34311835, 55517717
Offset: 0
-
q = x^2; s = x + 1; z = 40;
p[0, n_] := 1;
p[n_, x_] := x*p[n - 1, x] + Floor[(n + 1)*GoldenRatio] /; n > 0;
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}] :=
FixedPoint[(s PolynomialQuotient @@ #1 +
PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]
(* A192457 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]
(* A023611 *)
Showing 1-4 of 4 results.
Comments